Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392534

RESUMO

Honey bee viruses in combination with varroa mite are very damaging for honey bee colonies worldwide. There are no effective methods to control the viral load in honey bee colonies except regular and effective control of mites. Integrated Pest Management strategies are required to effectively control mites with veterinary medicines based on organic compounds. We evaluated the effect of two brood interruption techniques, queen caging (QC) and trapping comb (TC), followed by an oxalic acid treatment, on the mite fall, colony strength, and viral load of Deformed Wing Virus (DWV) and Acute Bee Paralysis Virus (ABPV). In this paper, we report the data obtained in two experimental sites, in Slovenia and Italy, in terms of the varroacide efficacy, colony strength, and viral load. The number of adult bees after the adoption of the two techniques showed similar decreasing trends in both locations. The viral load of Acute Bee Paralysis Virus did not show any significant reduction after 25 days, reported as the number of Real-Time PCR cycles needed to detect the virus. The viral load of DWV also did not show a significant reduction after 25 days. The acaricidal efficacy of the applied protocols was high in both experimental groups and in both apiaries. Both the queen caging and trapping comb techniques, followed by an oxalic acid treatment, can be considered effective varroa treatment strategies, but further studies should be carried out to evaluate the long-term effects on viral loads to plan the Integrated Pest Management strategy with the right timing before wintering.

2.
J Vis Exp ; (185)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35876557

RESUMO

Honeybees (Apis mellifera L.) inside the hive (nurse workers and other hive bees) and outside the hive (foragers) are exposed to climate and weather changes, various pesticides, pathogens, and malnutrition, mainly entering through the mouth and primarily affecting the digestive tracts of adult bees. To understand and prevent the effects of such external and internal stressors on honeybees, one useful research method is the immunohistochemical method. A basic protocol is described to prepare the midgut (ventriculus) and hypopharyngeal glands (HPGs) of adult bees for histological analysis. A detailed methodology is described to assess the level of cell damage and distinguish necrosis from programmed cell death (apoptosis) as a natural process of tissue regeneration. The results of adult honeybee treatment with oxalic acid and pesticides (insecticide and acaricide) and the determination of cell death in the ventriculus and HPGs are presented. The pros and cons of the methodology are also discussed.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Morte Celular , Sistema Digestório , Hipofaringe
3.
Biology (Basel) ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34571768

RESUMO

Various factors contribute to a decline in diversity and number of bees. Here, an integrated approach in experimental BPC 157 therapy was implemented, combining laboratory-controlled and field study results. The aim of a study was to assess the effects of BPC 157 additional feeding of newly emerged worker honeybees on few biochemical and immunological parameters in hemolymph (glucose, trehalose, lipids, proteins, vitellogenin, glucose-oxidase (GOX)), and hypopharyngeal gland (HPG), in laboratory-controlled conditions. Additionally, to examine the physiological status of protein digestion, the enzymatic activity of leucine aminopeptidase (LAP) in the mid-guts of worker honeybees was analyzed. It was found that individual honeybees, in hoarding cages, following BPC 157 administration through carbohydrate food, showed positive physiological changes when compared to the control groups. Those results were complemented by strong and visible LAP activity, particularly noticeable in the apical parts of the epithelial cells in the mid-guts of young worker honeybees originated from treated hives, suggesting a link between alternative oral therapy with BPC 157 and honeybees' immunity.

4.
Insects ; 11(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957451

RESUMO

Several negative factors contribute to a decline in the number of insect pollinators. As a novel approach in therapy, we hypothesize that the EM® for bees could potentially have an important therapeutic and immunomodulatory effect on honey bee colonies. The aim of our study was to evaluate its impact on honey bees at the individual and colony level. This is the first appliance of the commercial probiotic mix EM® PROBIOTIC FOR BEES in honey bees as economically important social insects. The sugar syrup with 10% of probiotic was administered by spraying or feeding the honey bee colonies in the field conditions, in order to evaluate the infection levels with spores of Nosema spp. and colonies' strength. Moreover, in laboratory-controlled conditions, in the hoarding cages, adult workers have been fed with sugar syrup supplemented with 2.5, 5, and 10% of EM® for bees for biochemical and immunological analyses of hemolymph, and with 5 and 10% for measuring the size of hypopharyngeal glands. It was found that following the EM® for bees administration the Nosema spp. spore counts in colonies were significantly reduced, and colonies' strength was increased. The results at the individual level showed significant positive physiological changes in treated groups of adult bees, revealing at the same time a higher mortality rate when feeding sugar syrup supplemented with the probiotic.

5.
Bull Environ Contam Toxicol ; 85(2): 125-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20640846

RESUMO

Honey bee colonies were exposed to pesticides used in agriculture or within bee hives by beekeepers: coumaphos; diazinon; amitraz or fluvalinate. Samples of bee workers, larvae and royal jelly were analysed using Gas Chromatography-Electron Capture Detection (GC-ECD). Amitraz was quantified using High Performance Liquid Chromatography (HPLC), and Gas Chromatography-Tandem Mass Spectrometry (GC/MS/MS) was used for quantification of diazinon. Sixth day after treatment, coumaphos was found in the royal jelly (250 ng/g) secreted by nurse workers and fluvalinate was found in both bee heads (105 ng/g, 8 days after treatment) and in larvae (110 ng/g, 4 days after treatment). Amitraz residues in all sampled material were below the level of detection of 10 ng/g. Diazinon was not detected in any of the analysed samples. The large quantities of fluvalinate found in bee heads and larvae, the coumaphos residues in royal jelly, and additional potential sub-lethal effects on individual honey bees or brood are discussed.


Assuntos
Abelhas/metabolismo , Exposição Ambiental , Poluentes Ambientais/farmacocinética , Praguicidas/farmacocinética , Animais , Abelhas/química , Cromatografia Líquida de Alta Pressão , Poluentes Ambientais/análise , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Larva/química , Larva/metabolismo , Praguicidas/análise , Espectrometria de Massas em Tandem
6.
Bull Environ Contam Toxicol ; 83(3): 374-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19434347

RESUMO

Honey bee (Apis mellifera carnica) colonies were placed in two apple orchards treated with the insecticides diazinon and thiacloprid and the fungicide difenoconazole in accordance with a Protection Treatment Plan in the spring of 2007. Pollen and bee bread were collected from combs inside the hives. The residue of diazinon in pollen loads 10 days after orchard treatment was 0.09 mg/kg, and the same amount of residue was found in bee bread 16 days after treatment. In pollen loads 6 days after application 0.03 mg/kg of thiacloprid residues and 0.01 mg/kg of difenoconazole were found on the first day after application. Possible sub-lethal effects on individual honey bees and brood are discussed.


Assuntos
Abelhas/metabolismo , Malus/química , Resíduos de Praguicidas/análise , Pólen/química , Animais , Abelhas/química , Cromatografia Líquida de Alta Pressão , Diazinon/análise , Diazinon/química , Dioxolanos/análise , Dioxolanos/química , Fungicidas Industriais/análise , Fungicidas Industriais/química , Inseticidas/análise , Inseticidas/química , Neonicotinoides , Piridinas/análise , Piridinas/química , Eslovênia , Espectrometria de Massas em Tandem , Tiazinas/análise , Tiazinas/química , Triazóis/análise , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA