Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadm7435, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446881

RESUMO

Many biomolecular condensates are enriched in and depend on RNAs and RNA binding proteins (RBPs). So far, only a few studies have addressed the characterization of the intermolecular interactions responsible for liquid-liquid phase separation (LLPS) and the impact of condensation on RBPs and RNAs. Here, we present an approach to study protein-RNA interactions inside biomolecular condensates by applying cross-linking of isotope labeled RNA and tandem mass spectrometry to phase-separating systems (LLPS-CLIR-MS). LLPS-CLIR-MS enables the characterization of intermolecular interactions present within biomolecular condensates at residue-specific resolution and allows a comparison with the same complexes in the dispersed phase. We observe that sequence-specific RBP-RNA interactions present in the dispersed phase are generally maintained inside condensates. In addition, LLPS-CLIR-MS identifies structural alterations at the protein-RNA interfaces, including additional unspecific contacts in the condensed phase. Our approach offers a procedure to derive structural information of protein-RNA complexes within biomolecular condensates that could be critical for integrative structural modeling of ribonucleoproteins (RNPs) in this form.


Assuntos
Condensados Biomoleculares , Preservação Biológica , Separação de Fases , RNA , Ribonucleoproteínas
2.
Essays Biochem ; 67(2): 175-186, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36866608

RESUMO

Proteins and RNAs are fundamental parts of biological systems, and their interactions affect many essential cellular processes. Therefore, it is crucial to understand at a molecular and at a systems level how proteins and RNAs form complexes and mutually affect their functions. In the present mini-review, we will first provide an overview of different mass spectrometry (MS)-based methods to study the RNA-binding proteome (RBPome), most of which are based on photochemical cross-linking. As we will show, some of these methods are also able to provide higher-resolution information about binding sites, which are important for the structural characterisation of protein-RNA interactions. In addition, classical structural biology techniques such as nuclear magnetic resonance (NMR) spectroscopy and biophysical methods such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence-based methods contribute to a detailed understanding of the interactions between these two classes of biomolecules. We will discuss the relevance of such interactions in the context of the formation of membrane-less organelles (MLOs) by liquid-liquid phase separation (LLPS) processes and their emerging importance as targets for drug discovery.


Assuntos
Proteínas , RNA , RNA/metabolismo , Proteínas/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Descoberta de Drogas
3.
Proc Natl Acad Sci U S A ; 119(34): e2204618119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969745

RESUMO

Occludin is a tetramembrane-spanning tight junction protein. The long C-terminal cytoplasmic domain, which represents nearly half of occludin sequence, includes a distal bundle of three α-helices that mediates interactions with other tight junction components. A short unstructured region just proximal to the α-helical bundle is a phosphorylation hotspot within which S408 phosphorylation acts as molecular switch that modifies tight junction protein interactions and barrier function. Here, we used NMR to define the effects of S408 phosphorylation on intramolecular interactions between the unstructured region and the α-helical bundle. S408 pseudophosphorylation affected conformation at hinge sites between the three α-helices. Further studies using paramagnetic relaxation enhancement and microscale thermophoresis indicated that the unstructured region interacts with the α-helical bundle. These interactions between the unstructured domain are enhanced by S408 phosphorylation and allow the unstructured region to obstruct the binding site, thereby reducing affinity of the occludin tail for zonula occludens-1 (ZO-1). Conversely, S408 dephosphorylation attenuates intramolecular interactions, exposes the binding site, and increases the affinity of occludin binding to ZO-1. Consistent with an increase in binding to ZO-1, intravital imaging and fluorescence recovery after photobleaching (FRAP) analyses of transgenic mice demonstrated increased tight junction anchoring of enhanced green fluorescent protein (EGFP)-tagged nonphosphorylatable occludin relative to wild-type EGFP-occludin. Overall, these data define the mechanisms by which S408 phosphorylation modifies occludin tail conformation to regulate tight junction protein interactions and paracellular permeability.


Assuntos
Fosfoproteínas , Serina , Animais , Camundongos , Ocludina/genética , Ocludina/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica em alfa-Hélice , Serina/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
4.
Biochemistry ; 60(36): 2691-2703, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34029056

RESUMO

Using atomic force microscopy (AFM) and nuclear magnetic resonance (NMR), we describe small Aß40 oligomers, termed nanodroplet oligomers (NanDOs), which form rapidly and at Aß40 concentrations too low for fibril formation. NanDOs were observed in putatively monomeric solutions of Aß40 (e.g., by size exclusion chromatography). Video-rate scanning AFM shows rapid fusion and dissolution of small oligomer-sized particles, of which the median size increases with peptide concentration. In NMR (13C HSQC), a small number of chemical shifts changed with a change in peptide concentration. Paramagnetic relaxation enhancement NMR experiments also support the formation of NanDOs and suggest prominent interactions in hydrophobic domains of Aß40. Addition of Zn2+ to Aß40 solutions caused flocculation of NanDO-containing solutions, and selective loss of signal intensity in NMR spectra from residues in the N-terminal domain of Aß40. NanDOs may represent the earliest aggregated form of Aß40 in the aggregation pathway and are akin to premicelles in solutions of amphiphilies.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Espectroscopia de Ressonância Magnética/métodos , Microscopia de Força Atômica/métodos , Nanopartículas/química , Agregados Proteicos/fisiologia , Doença de Alzheimer/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA