Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(9): 130673, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029539

RESUMO

BACKGROUND: Biomolecular condensation via liquid-liquid phase separation (LLPS) is crucial for orchestrating cellular activities temporospatially. Although the rheological heterogeneity of biocondensates and the structural dynamics of their constituents carry critical functional information, methods to quantitatively study biocondensates are lacking. Single-molecule fluorescence research can offer insights into biocondensation mechanisms. Unfortunately, as dense condensates tend to sink inside their dilute aqueous surroundings, studying their properties via methods relying on Brownian diffusion may fail. METHODS: We take a first step towards single-molecule research on condensates of Tau protein under flow in a microfluidic channel of an in-house developed microfluidic chip. Fluorescence correlation spectroscopy (FCS), a well-known technique to collect molecular characteristics within a sample, was employed with a newly commercialised technology, where FCS is performed on an array detector (AD-FCS), providing detailed diffusion and flow information. RESULTS: The AD-FCS technology allowed characterising our microfluidic chip, revealing 3D flow profiles. Subsequently, AD-FCS allowed mapping the flow of Tau condensates while measuring their burst durations through the stationary laser. Lastly, AD-FCS allowed obtaining flow velocity and burst duration data, the latter of which was used to estimate the condensate size distribution within LLPS samples. CONCLUSION: Studying biocondensates under flow through AD-FCS is promising for single-molecule experiments. In addition, AD-FCS shows its ability to estimate the size distribution in condensate samples in a convenient manner, prompting a new way of investigating biocondensate phase diagrams. GENERAL SIGNIFICANCE: We show that AD-FCS is a valuable tool for advancing research on understanding and characterising LLPS properties of biocondensates.


Assuntos
Espectrometria de Fluorescência , Proteínas tau , Espectrometria de Fluorescência/métodos , Proteínas tau/química , Proteínas tau/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Dispositivos Lab-On-A-Chip , Difusão , Humanos
2.
J Biol Chem ; 299(3): 102977, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738792

RESUMO

Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.


Assuntos
Flavoproteínas , Proteínas Luminescentes , Riboflavina , Humanos , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo , Flavoproteínas/química , Células HEK293 , Proteínas Luminescentes/química
3.
Methods Mol Biol ; 2564: 121-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36107340

RESUMO

Flavin-based fluorescent proteins (FbFPs) are small fluorescent proteins derived from light-oxygen-voltage (LOV) domains. The proteins bind ubiquitous endogenous flavins as chromophores and can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents the methodology to identify LOV domain sequences in genomic databases; design new FbFPs; characterize their biochemical, spectroscopic, photophysical, and photochemical properties; and conduct basic fluorescence microscopy experiments.


Assuntos
Dinitrocresóis , Flavinas , Flavinas/metabolismo , Oxigênio/metabolismo , Proteínas
4.
Photochem Photobiol Sci ; 20(12): 1645-1656, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34796467

RESUMO

Light-oxygen-voltage (LOV) domains are common photosensory modules that found many applications in fluorescence microscopy and optogenetics. Here, we show that the Chloroflexus aggregans LOV domain can bind different flavin species (lumichrome, LC; riboflavin, RF; flavin mononucleotide, FMN; flavin adenine dinucleotide, FAD) during heterologous expression and that its physicochemical properties depend strongly on the nature of the bound flavin. We show that whereas the dissociation constants for different chromophores are similar, the melting temperature of the protein reconstituted with single flavin species varies from ~ 60 °C for LC to ~ 81 °C for FMN, and photobleaching half-times vary almost 100-fold. These observations serve as a caution for future studies of LOV domains in non-native conditions yet raise the possibility of fine-tuning various properties of LOV-based fluorescent probes and optogenetic tools by manipulating the chromophore composition.


Assuntos
Chloroflexus , Oxigênio , Mononucleotídeo de Flavina , Flavina-Adenina Dinucleotídeo , Riboflavina
5.
Biochem Biophys Res Commun ; 567: 143-147, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34153684

RESUMO

LOV domains are widespread photosensory modules that have also found applications in fluorescence microscopy, optogenetics, and light-driven generation of reactive oxygen species. Many of these applications require stable proteins with altered spectra. Here, we report a flavin-based fluorescent protein CisFbFP derived from Chloroflexus islandicus LOV domain-containing protein. We show that CisFbFP is thermostable, and its absorption and fluorescence spectra are red-shifted for ∼6 nm, which has not been observed for other cysteine-substituted natural LOV domains. We also provide a crystallographic structure of CisFbFP at the resolution of 1.2 Å that reveals alterations in the active site due to replacement of conservative asparagine with a serine. Finally, we discuss the possible effects of presence of cis-proline in the Aß-Bß loop on the protein's structure and stability. The findings provide the basis for engineering and color tuning of LOV-based tools for molecular biology.


Assuntos
Proteínas de Bactérias/química , Chloroflexus/química , Flavinas/química , Proteínas Luminescentes/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
6.
ACS Synth Biol ; 10(1): 72-83, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325704

RESUMO

Protein-fragment complementation assays are used ubiquitously for probing protein-protein interactions. Most commonly, the reporter protein is split in two parts, which are then fused to the proteins of interest and can reassemble and provide a readout if the proteins of interest interact with each other. The currently known split fluorescent proteins either can be used only in aerobic conditions and assemble irreversibly, or require addition of exogenous chromophores, which complicates the design of experiments. In recent years, light-oxygen-voltage (LOV) domains of several photoreceptor proteins have been developed into flavin-based fluorescent proteins (FbFPs) that, under some circumstances, can outperform commonly used fluorescent proteins such as GFP. Here, we show that CagFbFP, a small thermostable FbFP based on a LOV domain-containing protein from Chloroflexus aggregans, can serve as a split fluorescent reporter. We use the available genetic and structural information to identify three loops between the conserved secondary structure elements, Aß-Bß, Eα-Fα, and Hß-Iß, that tolerate insertion of flexible poly-Gly/Ser segments and eventually splitting. We demonstrate that the designed split pairs, when fused to interacting proteins, are fluorescent in vivo in E. coli and human cells and have low background fluorescence. Our results enable probing protein-protein interactions in anaerobic conditions without using exogenous fluorophores and provide a basis for further development of LOV and PAS (Per-Arnt-Sim) domain-based fluorescent reporters and optogenetic tools.


Assuntos
Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Corantes Fluorescentes/química , Proteínas de Bactérias/genética , Cálcio/química , Chloroflexus/metabolismo , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Flavinas/química , Transferência Ressonante de Energia de Fluorescência , Domínios Proteicos/genética , Dobramento de Proteína , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA