Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genetics ; 189(2): 411-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21840865

RESUMO

Four different SYP proteins (SYP-1, SYP-2, SYP-3, and SYP-4) have been proposed to form the central region of the synaptonemal complex (SC) thereby bridging the axes of paired meiotic chromosomes in Caenorhabditis elegans. Their interdependent localization suggests that they may interact within the SC. Our studies reveal for the first time how these SYP proteins are organized in the central region of the SC. Yeast two-hybrid and co-immunoprecipitation studies show that SYP-1 is the only SYP protein that is capable of homotypic interactions, and is able to interact with both SYP-2 and SYP-3 directly, whereas SYP-2 and SYP-3 do not seem to interact with each other. Specifically, the coiled-coil domain of SYP-1 is required both for its homotypic interactions and its interaction with the C-terminal domain of SYP-2. Meanwhile, SYP-3 interacts with the C-terminal end of SYP-1 via its N-terminal domain. Immunoelectron microscopy analysis provides insight into the orientation of these proteins within the SC. While the C-terminal domain of SYP-3 localizes in close proximity to the chromosome axes, the N-terminal domains of both SYP-1 and SYP-4, as well as the C-terminal domain of SYP-2, are located in the middle of the SC. Taking into account the different sizes of these proteins, their interaction abilities, and their orientation within the SC, we propose a model of how the SYP proteins link the homologous axes to provide the conserved structure and width of the SC in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Meiose , Complexo Sinaptonêmico/metabolismo , Animais , Sítios de Ligação , Western Blotting , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Imunoprecipitação , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Complexo Sinaptonêmico/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido
2.
PLoS Genet ; 5(10): e1000669, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19798442

RESUMO

The proper assembly of the synaptonemal complex (SC) between homologs is critical to ensure accurate meiotic chromosome segregation. The SC is a meiotic tripartite structure present from yeast to humans, comprised of proteins assembled along the axes of the chromosomes and central region (CR) proteins that bridge the two chromosome axes. Here we identify SYP-4 as a novel structural component of the SC in Caenorhabditis elegans. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of components of the CR of the SC, and is localized at the interface between homologs during meiosis. SYP-4 is essential for the localization of SYP-1, SYP-2, and SYP-3 CR proteins onto chromosomes, thereby playing a crucial role in the stabilization of pairing interactions between homologous chromosomes. In the absence of SYP-4, the levels of recombination intermediates, as indicated by RAD-51 foci, are elevated in mid-prophase nuclei, and crossover recombination events are significantly reduced. The lack of chiasmata observed in syp-4 mutants supports the elevated levels of chromosome nondisjunction manifested in high embryonic lethality. Altogether our findings place SYP-4 as a central player in SC formation and broaden our understanding of the structure of the SC and its assembly.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Meiose , Complexo Sinaptonêmico/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Ligação Proteica , Complexo Sinaptonêmico/genética , Técnicas do Sistema de Duplo-Híbrido
3.
Genes Dev ; 22(20): 2869-85, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18923084

RESUMO

The Shugoshin/Aurora circuitry that controls the timely release of cohesins from sister chromatids in meiosis and mitosis is widely conserved among eukaryotes, although little is known about its function in organisms whose chromosomes lack a localized centromere. Here we show that Caenorhabditis elegans chromosomes rely on an alternative mechanism to protect meiotic cohesin that is shugoshin-independent and instead involves the activity of a new chromosome-associated protein named LAB-1 (Long Arm of the Bivalent). LAB-1 preserves meiotic sister chromatid cohesion by restricting the localization of the C. elegans Aurora B kinase, AIR-2, to the interface between homologs via the activity of the PP1/Glc7 phosphatase GSP-2. The localization of LAB-1 to chromosomes of dividing embryos and the suppression of mitotic-specific defects in air-2 mutant embryos with reduced LAB-1 activity support a global role of LAB-1 in antagonizing AIR-2 in both meiosis and mitosis. Although the localization of a GFP fusion and the analysis of mutants and RNAi-mediated knockdowns downplay a role for the C. elegans shugoshin protein in cohesin protection, shugoshin nevertheless helps to ensure the high fidelity of chromosome segregation at metaphase I. We propose that, in C. elegans, a LAB-1-mediated mechanism evolved to offset the challenges of providing protection against separase activity throughout a larger chromosome area.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Imunofluorescência , Imunoglobulina G/imunologia , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Mitose/fisiologia , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Troca de Cromátide Irmã , Coesinas
4.
PLoS Genet ; 4(6): e1000088, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18535664

RESUMO

The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Meiose , Complexo Sinaptonêmico/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Pareamento Cromossômico , Troca Genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência , Complexo Sinaptonêmico/metabolismo
5.
Genetics ; 176(4): 2015-25, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17565948

RESUMO

Synaptonemal complex (SC) formation must be regulated to occur only between aligned pairs of homologous chromosomes, ultimately ensuring proper chromosome segregation in meiosis. Here we identify SYP-3, a coiled-coil protein that is required for assembly of the central region of the SC and for restricting its loading to occur only in an appropriate context, forming structures that bridge the axes of paired meiotic chromosomes in Caenorhabditis elegans. We find that inappropriate loading of central region proteins interferes with homolog pairing, likely by triggering a premature change in chromosome configuration during early prophase that terminates the search for homologs. As a result, syp-3 mutants lack chiasmata and exhibit increased chromosome mis-segregation. Altogether, our studies lead us to propose that SYP-3 regulates synapsis along chromosomes, contributing to meiotic progression in early prophase.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/fisiologia , Animais , Sequência de Bases , Caenorhabditis elegans/ultraestrutura , Pareamento Cromossômico/genética , Pareamento Cromossômico/fisiologia , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Primers do DNA/genética , DNA de Helmintos/genética , Genes de Helmintos , Meiose/genética , Meiose/fisiologia , Modelos Genéticos , Mutação , Complexo Sinaptonêmico/ultraestrutura
6.
Genetics ; 176(4): 2027-33, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17565963

RESUMO

SYP-3 is a new structural component of the synaptonemal complex (SC) required for the regulation of chromosome synapsis. Both chromosome morphogenesis and nuclear organization are altered throughout the germlines of syp-3 mutants. Here, our analysis of syp-3 mutants provides insights into the relationship between chromosome conformation and the repair of meiotic double-strand breaks (DSBs). Although crossover recombination is severely reduced in syp-3 mutants, the production of viable offspring accompanied by the disappearance of RAD-51 foci suggests that DSBs are being repaired in these synapsis-defective mutants. Our studies indicate that once interhomolog recombination is impaired, both intersister recombination and nonhomologous end-joining pathways may contribute to repair during germline meiosis. Moreover, our studies suggest that the conformation of chromosomes may influence the mode of DSB repair employed during meiosis.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Pareamento Cromossômico/genética , Animais , Caenorhabditis elegans/citologia , Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Feminino , Genes de Helmintos , Masculino , Meiose/genética , Mutação , Recombinação Genética , Complexo Sinaptonêmico/genética
7.
Cell ; 125(3): 467-81, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16603238

RESUMO

Histone methylation regulates chromatin structure, transcription, and epigenetic state of the cell. Histone methylation is dynamically regulated by histone methylases and demethylases such as LSD1 and JHDM1, which mediate demethylation of di- and monomethylated histones. It has been unclear whether demethylases exist that reverse lysine trimethylation. We show the JmjC domain-containing protein JMJD2A reversed trimethylated H3-K9/K36 to di- but not mono- or unmethylated products. Overexpression of JMJD2A but not a catalytically inactive mutant reduced H3-K9/K36 trimethylation levels in cultured cells. In contrast, RNAi depletion of the C. elegans JMJD2A homolog resulted in an increase in general H3-K9Me3 and localized H3-K36Me3 levels on meiotic chromosomes and triggered p53-dependent germline apoptosis. Additionally, other human JMJD2 subfamily members also functioned as trimethylation-specific demethylases, converting H3-K9Me3 to H3-K9Me2 and H3-K9Me1, respectively. Our finding that this family of demethylases generates different methylated states at the same lysine residue provides a mechanism for fine-tuning histone methylation.


Assuntos
Caenorhabditis elegans/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Domínio Catalítico , Diferenciação Celular/fisiologia , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Regulação para Baixo/fisiologia , Células Germinativas/citologia , Células Germinativas/metabolismo , Células HeLa , Histonas/química , Humanos , Histona Desmetilases com o Domínio Jumonji , Meiose/fisiologia , Mutação , Oxirredutases N-Desmetilantes , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Curr Genet ; 47(1): 18-28, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15551135

RESUMO

Eukaryotic cells invest a large proportion of their genome in maintaining telomere length homeostasis. Among the 173 non-essential yeast genes found to affect telomere length, a large proportion is involved in vacuolar traffic. When mutated, these vacuolar protein-sorting (VPS) genes lead to telomeres shorter than those observed in the wild type. Using genetic analysis, we characterized the pathway by which VPS15, VPS34, VPS22, VPS23 and VPS28 affect the telomeres. Our results indicate that these VPS genes affect telomere length through a single pathway and that this effect requires the activity of telomerase and the Ku heterodimer, but not the activity of Tel1p or Rif2p. We present models to explain the link between vacuolar traffic and telomere length homeostasis.


Assuntos
Telomerase/farmacologia , Telômero/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/farmacologia , Leveduras/genética , Homeostase , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 101(23): 8658-63, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15161972

RESUMO

Telomeres are nucleoprotein structures present at the ends of eukaryotic chromosomes that play a central role in guarding the integrity of the genome by protecting chromosome ends from degradation and fusion. Length regulation is central to telomere function. To broaden our knowledge about the mechanisms that control telomere length, we have carried out a systematic examination of approximately 4,800 haploid deletion mutants of Saccharomyces cerevisiae for telomere-length alterations. By using this screen, we have identified >150 candidate genes not previously known to affect telomere length. In two-thirds of the identified mutants, short telomeres were observed; whereas in one-third, telomeres were lengthened. The genes identified are very diverse in their functions, but certain categories, including DNA and RNA metabolism, chromatin modification, and vacuolar traffic, are overrepresented. Our results greatly enlarge the number of known genes that affect telomere metabolism and will provide insights into how telomere function is linked to many other cellular processes.


Assuntos
Genoma Fúngico , Mutação , Saccharomyces cerevisiae/genética , Telômero/genética , Sequência de Bases , DNA Fúngico/genética , Deleção de Genes , Fenótipo
10.
Proc Natl Acad Sci U S A ; 101(6): 1656-61, 2004 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-14745004

RESUMO

Telomeres, the natural ends of eukaryotic chromosomes, prevent the loss of chromosomal sequences and preclude their recognition as broken DNA. Telomere length is kept under strict boundaries by the action of various proteins, some with negative and others with positive effects on telomere length. Recently, data have been accumulating to support a role for DNA replication in the control of telomere length, although through a currently poorly understood mechanism. Elg1p, a replication factor C (RFC)-like protein of yeast, contributes to genome stability through a putative replication-associated function. Here, we show that Elg1p participates in negative control of telomere length and in telomeric silencing through a replication-mediated pathway. We show that the telomeric function of Elg1 is independent of recombination and completely dependent on an active telomerase. Additionally, this function depends on yKu and DNA polymerase. We discuss alternative models to explain how Elg1p affects telomere length.


Assuntos
Proteínas de Transporte/fisiologia , Inativação Gênica , Telômero , Sequência de Bases , Proteínas de Transporte/genética , Primers do DNA , Proteínas de Saccharomyces cerevisiae
11.
Mol Cell Biol ; 23(23): 8729-39, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14612413

RESUMO

Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Fatores de Transcrição/metabolismo , Divisão Celular , Replicação do DNA , DNA Fúngico/biossíntese , DNA Fúngico/genética , Kluyveromyces/citologia , Kluyveromyces/genética , Kluyveromyces/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA