Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(8): 1564-1579, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37593752

RESUMO

In recent years, there has been considerable interest in mAb-based induction of costimulatory receptor signaling as an approach to combat cancer. However, promising nonclinical data have yet to translate to a meaningful clinical benefit. Inducible T-cell costimulator (ICOS) is a costimulatory receptor important for immune responses. Using a novel clinical-stage anti-ICOS immunoglobulin G4 mAb (feladilimab), which induces but does not deplete ICOS+ T cells and their rodent analogs, we provide an end-to-end evaluation of the antitumor potential of antibody-mediated ICOS costimulation alone and in combination with programmed cell death protein 1 (PD-1) blockade. We demonstrate, consistently, that ICOS is expressed in a range of cancers, and its induction can stimulate growth of antitumor reactive T cells. Furthermore, feladilimab, alone and with a PD-1 inhibitor, induced antitumor activity in mouse and humanized tumor models. In addition to nonclinical evaluation, we present three patient case studies from a first-time-in-human, phase I, open-label, dose-escalation and dose-expansion clinical trial (INDUCE-1; ClinicalTrials.gov: NCT02723955), evaluating feladilimab alone and in combination with pembrolizumab in patients with advanced solid tumors. Preliminary data showing clinical benefit in patients with cancer treated with feladilimab alone or in combination with pembrolizumab was reported previously; with example cases described here. Additional work is needed to further validate the translation to the clinic, which includes identifying select patient populations that will benefit from this therapeutic approach, and randomized data with survival endpoints to illustrate its potential, similar to that shown with CTLA-4 and PD-1 blocking antibodies. Significance: Stimulation of the T-cell activation marker ICOS with the anti-ICOS agonist mAb feladilimab, alone and in combination with PD-1 inhibition, induces antitumor activity across nonclinical models as well as select patients with advanced solid tumors.


Assuntos
Instituições de Assistência Ambulatorial , Anticorpos Monoclonais , Humanos , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Inibidores de Checkpoint Imunológico , Imunoglobulina G , Inibição Psicológica
2.
Front Immunol ; 13: 914406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812451

RESUMO

In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.


Assuntos
Imunoterapia , Neoplasias , Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Humanos , Ligantes , Nectinas , Neoplasias/terapia , Receptores Imunológicos
3.
Mol Cancer Ther ; 20(10): 1941-1955, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253590

RESUMO

B-cell maturation antigen (BCMA) is an attractive therapeutic target highly expressed on differentiated plasma cells in multiple myeloma and other B-cell malignancies. GSK2857916 (belantamab mafodotin, BLENREP) is a BCMA-targeting antibody-drug conjugate approved for the treatment of relapsed/refractory multiple myeloma. We report that GSK2857916 induces immunogenic cell death in BCMA-expressing cancer cells and promotes dendritic cell activation in vitro and in vivo GSK2857916 treatment enhances intratumor immune cell infiltration and activation, delays tumor growth, and promotes durable complete regressions in immune-competent mice bearing EL4 lymphoma tumors expressing human BCMA (EL4-hBCMA). Responding mice are immune to rechallenge with EL4 parental and EL4-hBCMA cells, suggesting engagement of an adaptive immune response, immunologic memory, and tumor antigen spreading, which are abrogated upon depletion of endogenous CD8+ T cells. Combinations with OX40/OX86, an immune agonist antibody, significantly enhance antitumor activity and increase durable complete responses, providing a strong rationale for clinical evaluation of GSK2857916 combinations with immunotherapies targeting adaptive immune responses, including T-cell-directed checkpoint modulators.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Imunoconjugados/farmacologia , Morte Celular Imunogênica , Linfoma/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Animais , Anticorpos Monoclonais/química , Apoptose , Antígeno de Maturação de Linfócitos B/imunologia , Proliferação de Células , Feminino , Humanos , Linfoma/imunologia , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 25(21): 6406-6416, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371342

RESUMO

PURPOSE: OX40 agonist-based combinations are emerging as a novel avenue to improve the effectiveness of cancer immunotherapy. To better guide its clinical development, we characterized the role of the OX40 pathway in tumor-reactive immune cells. We also evaluated combining OX40 agonists with targeted therapy to combat resistance to cancer immunotherapy.Experimental Design: We utilized patient-derived tumor-infiltrating lymphocytes (TILs) and multiple preclinical models to determine the direct effect of anti-OX40 agonistic antibodies on tumor-reactive CD8+ T cells. We also evaluated the antitumor activity of an anti-OX40 antibody plus PI3Kß inhibition in a transgenic murine melanoma model (Braf mutant, PTEN null), which spontaneously develops immunotherapy-resistant melanomas. RESULTS: We observed elevated expression of OX40 in tumor-reactive CD8+ TILs upon encountering tumors; activation of OX40 signaling enhanced their cytotoxic function. OX40 agonist antibody improved the antitumor activity of CD8+ T cells and the generation of tumor-specific T-cell memory in vivo. Furthermore, combining anti-OX40 with GSK2636771, a PI3Kß-selective inhibitor, delayed tumor growth and extended the survival of mice with PTEN-null melanomas. This combination treatment did not increase the number of TILs, but it instead significantly enhanced proliferation of CD8+ TILs and elevated the serum levels of CCL4, CXCL10, and IFNγ, which are mainly produced by memory and/or effector T cells. CONCLUSIONS: These results highlight a critical role of OX40 activation in potentiating the effector function of tumor-reactive CD8+ T cells and suggest further evaluation of OX40 agonist-based combinations in patients with immune-resistant tumors.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Melanoma/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Receptores OX40/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Receptores OX40/antagonistas & inibidores
6.
Nature ; 564(7736): 439-443, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30405246

RESUMO

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Desenho de Fármacos , Proteínas de Membrana/agonistas , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/uso terapêutico , Humanos , Ligantes , Proteínas de Membrana/imunologia , Camundongos , Modelos Moleculares , Nucleotídeos Cíclicos/metabolismo
7.
PLoS One ; 13(11): e0206223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30388137

RESUMO

Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral , Animais , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Antígeno Ki-67/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Resultado do Tratamento
8.
Nat Rev Drug Discov ; 14(9): 603-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26228631

RESUMO

The regulatory approval of ipilimumab (Yervoy) in 2011 ushered in a new era of cancer immunotherapies with durable clinical effects. Most of these breakthrough medicines are monoclonal antibodies that block protein-protein interactions between T cell checkpoint receptors and their cognate ligands. In addition, genetically engineered autologous T cell therapies have also recently demonstrated significant clinical responses in haematological cancers. Conspicuously missing from this class of therapies are traditional small-molecule drugs, which have previously served as the backbone of targeted cancer therapies. Modulating the immune system through a small-molecule approach offers several unique advantages that are complementary to, and potentially synergistic with, biologic modalities. This Review highlights immuno-oncology pathways and mechanisms that can be best or solely targeted by small-molecule medicines. Agents aimed at these mechanisms--modulation of the immune response, trafficking to the tumour microenvironment and cellular infiltration--are poised to significantly extend the scope of immuno-oncology applications and enhance the opportunities for combination with tumour-targeted agents and biologic immunotherapies.


Assuntos
Imunoterapia/tendências , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Humanos , Ipilimumab , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
9.
Clin Cancer Res ; 21(7): 1639-51, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25589619

RESUMO

PURPOSE: To assess the immunologic effects of dabrafenib and trametinib in vitro and to test whether trametinib potentiates or antagonizes the activity of immunomodulatory antibodies in vivo. EXPERIMENTAL DESIGN: Immune effects of dabrafenib and trametinib were evaluated in human CD4(+) and CD8(+) T cells from healthy volunteers, a panel of human tumor cell lines, and in vivo using a CT26 mouse model. RESULTS: Dabrafenib enhanced pERK expression levels and did not suppress human CD4(+) or CD8(+) T-cell function. Trametinib reduced pERK levels, and resulted in partial/transient inhibition of T-cell proliferation/expression of a cytokine and immunomodulatory gene subset, which is context dependent. Trametinib effects were partially offset by adding dabrafenib. Dabrafenib and trametinib in BRAF V600E/K, and trametinib in BRAF wild-type tumor cells induced apoptosis markers, upregulated HLA molecule expression, and downregulated certain immunosuppressive factors such as PD-L1, IL1, IL8, NT5E, and VEGFA. PD-L1 expression in tumor cells was upregulated after acquiring resistance to BRAF inhibition in vitro. Combinations of trametinib with immunomodulators targeting PD-1, PD-L1, or CTLA-4 in a CT26 model were more efficacious than any single agent. The combination of trametinib with anti-PD-1 increased tumor-infiltrating CD8(+) T cells in CT26 tumors. Concurrent or phased sequential treatment, defined as trametinib lead-in followed by trametinib plus anti-PD-1 antibody, demonstrated superior efficacy compared with anti-PD-1 antibody followed by anti-PD-1 plus trametinib. CONCLUSION: These findings support the potential for synergy between targeted therapies dabrafenib and trametinib and immunomodulatory antibodies. Clinical exploration of such combination regimens is under way.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imidazóis/farmacologia , Oximas/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Fatores Imunológicos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Genes Dev ; 17(22): 2825-38, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14630943

RESUMO

Heterochromatin proteins are thought to play key roles in chromatin structure and gene regulation, yet very few genes have been identified that are regulated by these proteins. We performed large-scale mapping and analysis of in vivo target loci of the proteins HP1, HP1c, and Su(var)3-9 in Drosophila Kc cells, which are of embryonic origin. For each protein, we identified approximately 100-200 target genes among >6000 probed loci. We found that HP1 and Su(var)3-9 bind together to transposable elements and genes that are predominantly pericentric. In addition, Su(var)3-9 binds without HP1 to a distinct set of nonpericentric genes. On chromosome 4, HP1 binds to many genes, mostly independent of Su(var)3-9. The binding pattern of HP1c is largely different from those of HP1 and Su(var)3-9. Target genes of HP1 and Su(var)3-9 show lower expression levels in Kc cells than do nontarget genes, but not if they are located in pericentric regions. Strikingly, in pericentric regions, target genes of Su(var)3-9 and HP1 are predominantly embryo-specific genes, whereas on the chromosome arms Su(var)3-9 is preferentially associated with a set of male-specific genes. These results demonstrate that, depending on chromosomal location, the HP1 and Su(var)3-9 proteins form different complexes that associate with specific sets of developmentally coexpressed genes.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Heterocromatina , Proteínas Repressoras/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Mapeamento Cromossômico , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Perfilação da Expressão Gênica , Inativação Gênica/fisiologia , Heterocromatina/genética , Heterocromatina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Proteínas Repressoras/genética
11.
Science ; 298(5593): 621-2, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12386335

RESUMO

Phage display is a simple yet powerful technology that is used to rapidly characterize protein-protein interactions from amongst billions of candidates. This widely practiced technique is used to map antibody epitopes, create vaccines and to engineer peptides, antibodies and other proteins as both diagnostic tools and as human therapeutics. We overview the history of phage display and several recent applications.


Assuntos
Biblioteca de Peptídeos , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos , Bacteriófagos/genética , Bases de Dados de Proteínas , Mapeamento de Epitopos , Humanos , Nanotecnologia , Peptídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA