Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894625

RESUMO

The constant influx of pesticides into soils is a key environmental issue in terms of their potential retention in the soil, thus reducing their negative impact on the environment. Soil organic matter (SOM) is an important factor influencing the environmental fate of these substances. Therefore, the aim of this research was to assess the chemical behavior of pesticides (flufenacet, pendimethalin, α-cypermethrin, metazachlor, acetamiprid) toward stable soil humin fractions (HNs) as a main factor affecting the formation of non-extractable residues of agrochemicals in soil. This research was conducted as a batch experiment according to OECD Guideline 106. For this purpose, HNs were isolated from eight soils with different physicochemical properties (clay content = 16-47%, pHKCl = 5.6-7.7, TOC = 13.3-49.7 g·kg-1, TN = 1.06-2.90 g·kg-1, TOC/TN = 11.4-13.7) to reflect the various processes of their formation. The extraction was carried out through the sequential separation of humic acids with 0.1 M NaOH, and then the digestion of the remaining mineral fraction with 10% HF/HCl. The pesticide concentrations were detected using GC-MS/MS. The pesticides were characterized based on the different sorption rates to HNs, according to the overall trend: metazachlor (95% of absorbed compound) > acetamiprid (94% of absorbed compound) > cypermethrin (63% of partitioning compound) > flufenacet (39% of partitioning compound) > pendimethalin (28% of partitioning compound). Cypermethrin and metazachlor exhibited the highest saturation dynamic, while the other agrochemicals were much more slowly attracted by the HNs. The obtained sorption kinetic data were congruous to the pseudo-first-order and pseudo-second-order models related to the surface adsorption and interparticle diffusion isotherm. The conducted research showed that the processes of pesticide sorption, apart from physicochemical phenomena, are also affected by the properties of the pollutants themselves (polarity, KOC) and the soil properties (SOM content, clay content, and pHKCl).

2.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615617

RESUMO

Soil organic matter (SOM) and its heterogeneous nature constitutes the main factor determining the fate and transformation of organic chemicals (OCs). Thus, the aim of thus research was to analyze the influence of the molecular chemodiversity of a stable SOM (S-SOM) on the sorption potential of different groups of OCs (organochloride pesticides­OCPs, and non-chlorinated pesticides­NCPs, polycyclic aromatic hydrocarbons­PAHs). The research was conducted as a batch experiment. For this purpose, a S-SOM was separated from six soils (TOC = 15.0−58.7 gkg−1; TN = 1.4−6.6 gkg−1, pH in KCl = 6.4−7.4 and WRB taxonomy: fluvisols, luviosols, leptosols) by alkaline urea and dimethylsulphoxide with sulfuric acid. Isolated S-SOM fraction was evaluated by UV−VIS, FT-IR and EEM spectroscopy to describe molecular diversity, which allowed the assessment of its potential sorption properties regarding OCs. In order to directly evaluate the sorption affinity of individual OCs to S-SOM, the mixture of the 3 deuterated contaminants: chrysene (PAHs), 4,4'DDT (OCPs) atrazine (NCPs) were applied. The sorption experiment was carried out according to the 106 OECD Guidelines. The OCs concentration was analyzed by gas chromatography triple mass spectrometry (GC-MS/MS). OCs were characterized by different sorption rates to S-SOM fractions according to the overall trend: atrazine (87.5−99.9%) > 4,4'DDT (64−81.6%) > chrysene (35.2−79.8%). Moreover, atrazine exhibited the highest saturation dynamic with fast bounding time amounting to 6 h of contact with S-SOM. Proportionally, the chrysene showed the slowest binding time achieving an average of 55% sorption after 78 h. Therefore, S-SOM isolated from different soils demonstrated varying binding capacity to OCs (CoV = 21%, 27% and 33% for atrazine, DDT and chrysene, respectively). Results indicate that each sample contains S-SOM with different degrees of transformation and sorption properties that affect the OCs availability in soil. Spectroscopic analyses have shown that the main component of S-SOM are biopolymers at various stages of transformation that contain numerous aromatic−aliphatic groups with mostly hydrophilic substituents.


Assuntos
Atrazina , Praguicidas , Poluentes do Solo , Solo/química , Atrazina/química , Crisenos , Espectroscopia de Infravermelho com Transformada de Fourier , DDT , Espectrometria de Massas em Tandem , Adsorção , Praguicidas/análise , Compostos Orgânicos/química , Poluentes do Solo/análise
3.
J Environ Manage ; 325(Pt B): 116581, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323117

RESUMO

Climate-smart sustainable management of agricultural soil is critical to improve soil health, enhance food and water security, contribute to climate change mitigation and adaptation, biodiversity preservation, and improve human health and wellbeing. The European Joint Programme for Soil (EJP SOIL) started in 2020 with the aim to significantly improve soil management knowledge and create a sustainable and integrated European soil research system. EJP SOIL involves more than 350 scientists across 24 Countries and has been addressing multiple aspects associated with soil management across different European agroecosystems. This study summarizes the key findings of stakeholder consultations conducted at the national level across 20 countries with the aim to identify important barriers and challenges currently affecting soil knowledge but also assess opportunities to overcome these obstacles. Our findings demonstrate that there is significant room for improvement in terms of knowledge production, dissemination and adoption. Among the most important barriers identified by consulted stakeholders are technical, political, social and economic obstacles, which strongly limit the development and full exploitation of the outcomes of soil research. The main soil challenge across consulted member states remains to improve soil organic matter and peat soil conservation while soil water storage capacity is a key challenge in Southern Europe. Findings from this study clearly suggest that going forward climate-smart sustainable soil management will benefit from (1) increases in research funding, (2) the maintenance and valorisation of long-term (field) experiments, (3) the creation of knowledge sharing networks and interlinked national and European infrastructures, and (4) the development of regionally-tailored soil management strategies. All the above-mentioned interventions can contribute to the creation of healthy, resilient and sustainable soil ecosystems across Europe.


Assuntos
Ecossistema , Solo , Humanos , Agricultura , Mudança Climática , Europa (Continente)
4.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364162

RESUMO

Visible and near-infrared spectroscopy (VIS-NIRS) is a fast and simple method increasingly used in soil science. This study aimed to investigate VIS-NIRS applicability to predict soil black carbon (BC) content and the method's suitability for rapid BC-level screening. Forty-three soil samples were collected in an agricultural area remaining under strong industrial impact. Soil texture, pH, total nitrogen (Ntot) and total carbon (Ctot), soil organic carbon (SOC), soil organic matter (SOM), and BC were analyzed. Samples were divided into three classes according to BC content (low, medium, and high BC content) and scanned in the 350-2500 nm range. A support vector machine (SVM) was used to develop prediction models of soil properties. Partial least-square with SVM (PLS-SVM) was used to classify samples for screening purposes. Prediction models of soil properties were at best satisfactory (Ntot: R2 = 0.76, RMSECV = 0.59 g kg-1, RPIQ = 0.65), due to large kurtosis and data skewness. The RMSECV were large (16.86 g kg-1 for SOC), presumably due to the limited number of samples available and the wide data spread. Given our results, the VIS-NIRS method seems efficient for classifying soil samples from an industrialized area according to BC content level (training accuracy of 77% and validation accuracy of 81%).


Assuntos
Carbono , Solo , Solo/química , Agricultura , Nitrogênio/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fuligem
5.
J Hazard Mater ; 416: 126087, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492901

RESUMO

Anthropogenic activities leading to chemical contamination of soil and global climate change may increase the level of stress for plants. Recent decades studies (mainly two-factors) have reported that the ecotoxicity of soil contaminants could be modified by climate factors. To date, little is known about: the combined climate-chemical stress on plants; the interaction of chemicals with high soil moisture conditions; the impact of soil properties on the combined climate-chemical stress and questions regarding the response of organisms to combined effect of all key factors influencing the ecotoxicity of chemicals under field conditions remain unanswered. Our study sought to fill the knowledge gap on the multifactorial interaction of four main factors encounter in polluted areas (soil chemical contamination: heavy metal (Zn); temperature: 10, 23, 35 °C, moisture: 55, 80%WHC; soil properties). The assessment of combined effect of multiple stressors based on the multiple ANCOVA model (n = 108; adjusted R2 = 0.68) and calculated indicators showed: 1) all studied factors significantly interacted and influenced the phytotoxic effect of Zn; 2) Zn modified the plant response to temperature stress depending on moisture conditions and soil properties. This study improves methods for assessing the hazardous effects of soil chemical contamination in the real environment.


Assuntos
Poluentes do Solo , Solo , Plântula , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Temperatura , Triticum , Zinco/análise , Zinco/toxicidade
6.
Front Microbiol ; 11: 572314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042080

RESUMO

Fungi have increased tolerance to environmental stress (also related to the access of pollutants, e.g., trace elements and polycyclic aromatic hydrocarbons PAHs). The aim of the study was to evaluate the mycobiome and functional diversity of fungi in long-term crude-oil contaminated soils as the potential bioremediators of oil contaminated sites. Samples were taken from three historical oil wells (over a century old) at two distances: within a 0.5 m radius of the oil wells (OWP1, OWP2, and OWP3) and within a 3 m radius from the oil wells as the controls (OW1, OW2, and OW3). Next generation sequencing (for the ITS region) was accompanied with determination of the functional fungal community based on Biolog FFPlates, glomalin related soil protein (GRSP) content, trace element and PAHs concentration. The research hypothesis assumed that long-term natural bioremediation of crude oil contaminated soils can contribute to intensive development of a unique fungal community adapted to the contamination conditions. The identification of such fungi can be of particular importance in soil bioremediation. There were significant differences in the fungal community and functional diversity between the soil samples. The soils collected directly from the oil wells were characterized by higher biological activity and higher diversity of PAH-degrading fungal candidates compared to the soils collected within 3 m of the oil wells. The total glomalin-related soil proteins (T-GRSP) and easily-extractable glomalin-related soil proteins (EE-GRSP) contents were lower in soil samples taken directly from the crude oil well. The control soil (OW) subjected to a long-term natural remediation may already have sufficient conditions for the growth and development of mycorrhizal fungi. The mycobiome of the soils collected directly from the oil wells (OWP1, OWP2, and OWP3) was characterized by a 35% share of PAH-degrading candidates, compared to the soil collected at the 3 m distance from the oil wells (OW1, OW2, and OW3) at < 5%. The main PAH-degrading fungal candidates belong to genera Ilyonectria, Chaetomium, Gibberella, Paraphoma, Schizothecium, Pseudorobillarda, Tetracladium, Ganoderma, Cadophora, Exophiala, Knufia, Mycoleptodiscus, Cyphellophora, Fusicolla, Devriesia, Didymella, Plenodomus, Pyrenochaetopsis, Symbiotaphrina, Phallus, Coprinellus, Plectosphaerella, Septoriella, and Hypholoma. The share of three- and four-ringed PAHs in soil was higher as the distance from the oil well increased. These results may indicate that more effective degradation processes occur closer to the oil wells.

7.
Molecules ; 25(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466451

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) exhibit persistence in soils, and most of them are potentially mutagenic/carcinogenic and teratogenic for human beings but also influence the growth and development of soil organisms. The PAHs emitted into the atmosphere are ultimately deposited (by dry or wet deposition processes) onto the soil surface where they tend to accumulate. Soil organic matter (SOM) plays an important role in the fate and transformation processes of PAHs, affecting their mobility, availability, and persistence. Therefore, the aim of this research was to investigate the influence of SOM fractional diversification (fulvic acids-FA, humic acids-HA, and humins-HN) on PAH availability and persistence in soils. Twenty soil samples (n = 20) were collected from upper horizons (0-30 cm) of agricultural soils exposed to anthropogenic emissions from industrial and domestic sources. The assessment of PAH concentrations included the determination of medium-molecular-weight compounds from the US EPA list: fluoranthene-FLA, pyrene-PYR, benz(a)anthracene-BaA, and chrysene-CHR. The assessment was conducted using the GC-MS/MS technique. Three operationally defined fractions were investigated: total extractable PAHs (TE-PAHs) fraction, available/bioavailable PAHs (PB-PAHs) fraction, and nonavailable/residual PAHs (RE-PAHs) fraction, which was calculated as the difference between total and available PAHs. TE-PAHs were analyzed by dichloromethane extraction, while PB-PAHs were analyzed with a hydrophobic ß-cyclodextrin solution. SOM was characterized by total organic carbon content (Turin method) and organic carbon of humic substances including FA, HA, HN (IHSS method). Concentrations of PAHs differed between soils from 193.5 to 3169.5 µg kg-1, 4.3 to 226.4 µg kg-1, and 148.6 to 3164.7 µg kg-1 for ∑4 TE-PAHs, ∑4 PB-PAHs, and ∑4 RE-PAHs, respectively. The ∑4 PB-PAHs fraction did not exceed 30% of ∑4 TE-PAHs. FLA was the most strongly bound in soil (highest content of RE-FLA), whereas PYR was the most available (highest content of PB-PYR). The soils were characterized by diversified total organic carbon (TOC) concentration (8.0-130.0 g kg-1) and individual SOM fractions (FA = 0.4-7.5 g kg-1, HA = 0.6-13.0 g kg-1, HN = 0.9-122.9 g kg-1). FA and HA as the labile fraction of SOM with short turnover time strongly positively influenced the potential ∑4 PAH availability (r = 0.56 and r = 0.52 for FA and HA, respectively). HN, which constitutes a stable fraction of organic matter with high hydrophobicity and poor degradability, was strongly correlated with ∑4 RE-PAHs (r = 0.75), affecting their persistence in soil.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Benzopiranos/química , Monitoramento Ambiental/métodos , Substâncias Húmicas , Solo/química , Espectrometria de Massas em Tandem
8.
Molecules ; 25(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326493

RESUMO

The aim of this study was to identify and examine the levels of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in soil collected from the surroundings of historical pesticide storage facilities on former agricultural aerodromes, warehouses, and pesticide distribution sites located in the most important agricultural regions in Azerbaijan. The conducted research included determination of three groups of POPs (occurring together), in the natural soil environment influenced for many years by abiotic and biotic factors that could have caused their transformations or decomposition. In this study, soil samples were collected in 21 georeferenced points located in the administrative area of Bilasuvar, Saatly, Sabirabad, Salyan and Jalilabad districts of Azerbaijan. Soil chemical analysis involved determination of organochlorine compounds (OCP): hexachlorocyclohexanes (HCHs) (three isomers α-HCH, ß-HCH and γ-HCH) and dichlorodiphenyltrichloroethanes (DDTs) (six congeners 2,4'DDT; 4,4'DDT; 2,4'DDE; 4,4'DDE; 2,4'DDE; and 4,4'DDE); polycyclic aromatic hydrocarbons (PAHs): 16 compounds from the United States Environmental Protection Agency US EPA list and, PCBs (seven congeners identified with the following IUPAC numbers: 28, 52, 101, 118, 138, 153, and 180). Our research showed that OCPs reached the highest concentration in the studied areas. The total concentrations of OCPs ranged from 0.01 to 21,888 mg∙kg-1 with significantly higher concentrations of Σ6DDTs (0.01 µg kg-1 to 21880 mg kg-1) compared to ΣHCH (0.14 ng kg-1 to 166.72 µg kg-1). The total concentrations of PCBs in the studied soils was varied from 0.02 to 147.30 µg·kg-1 but only PCB138 and PCB180 were detected in all analyzed samples. The concentrations of Σ16 PAHs were also strongly diversified throughout the sampling areas and ranged from 0.15 to 16,026 mg kg-1. The obtained results confirmed that the agricultural soils of Azerbaijan contained much lower (up to by three orders of magnitude) concentrations of PCBs and PAHs than DDT. It is supported by the fact that PCBs and PAHs were not directly used by agriculture sector and their content results from secondary sources, such as combustion and various industrial processes. Moreover, the high concentrations of PAHs in studied soils were associated with their location in direct neighborhood of the airport, as well as with accumulation of contaminants from dispersed sources and long range transport. The high concentrations of pesticides confirm that deposition of parent OCPs have occurred from obsolete pesticide landfills.


Assuntos
Compostos Orgânicos/análise , Poluentes Orgânicos Persistentes/química , Poluentes do Solo/análise , Solo/química , Agricultura , Azerbaijão , Geografia , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química
9.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013185

RESUMO

Pesticides belong to a group of xenobiotics harmful to humans and wildlife, whose fate and activity depends on their susceptibility to degradation. Therefore, the monitoring of their residue level in agricultural soils is very important because it provides very valuable information on the actual level of soil contamination and environmental risk resulting from their application. The aim of this study was to evaluate contemporary concentrations of organochlorine (OCPs) and non-chlorinated pesticides (NCPs) in arable soils of Poland as an example of Central and Eastern European countries. The results were assessed in relation to Polish regulations, which are more restrictive compared to those of other European countries. The sampling area covered the territory of arable lands in Poland (216 sampling points). The distribution of sampling points aimed to reflect different geographical districts, conditions of agricultural production, and various soil properties. The collected soil samples were extracted with organic solvents in an accelerated solvent extractor (ASE 2000). The OCPs, including α-HCH, ß-HCH, γ-HCH, and p,p'DDT, p,p'DDE, and p,p'DDD, were extracted with a hexane/acetone mixture (70:30 v/v) and determined by gas chromatography with an electron capture detector (GC-µECD). NCPs included atrazine, carbaryl, and carbofuran were extracted with a dichloromethane/acetone mixture (50:50 v/v), while maneb was extracted by intensive shaking the sample with acetone (1:1 v/v) and ethylenediamine-tertraacetic acid. The NCPs were identified by a dual mass- spectrometry (GC-MS/MS). The total content of individual OCPs ranged from 0.61 to 1031.64 µg kg-1, while the NCP concentrations were significantly lower, from 0.01 to 43.92 µg kg-1. DDTs were detected in all soils samples (p,p'DDD (23.60 µg kg-1) > p,p'DDT (18.23 µg kg-1) > p,p'DDE (4.06 µg kg-1), while HCHs were only in 4% of the analyzed samples (ß-HCH (339.55 µg kg-1) > α-HCH (96.96 µg kg-1) > γ-HCH (3.04 µg kg-1)), but in higher values than DDTs. Among NCPs, higher concentration was observed for carbaryl (<0.01-28.07 µg kg-1) and atrazine (<0.01-15.85 µg kg-1), while the lower for carbofuran (<0.01-0.54 µg kg-1). Maneb was not detected in analyzed soils. Assessment of the level of soil pollution based on Polish regulations indicated that several percentages of the samples exceeded the criterion for OCPs, such as ∑3DDTs (14 samples; 6.5% of soils) and HCH congeners (α-HCH in one sample; 0.5% of soils), while NCP concentration, such as for atrazine, carbaryl and carbofuran were below the permissible levels or were not detected in the analyzed soils, e.g. maneb. The obtained results indicated that residues of the analyzed pesticides originate from historical agricultural deposition and potentially do not pose a direct threat to human and animal health. The behavior and persistence of pesticides in the soils depend on their properties. Significantly lower NCP concentration in the soils resulted from their lower hydrophobicity and higher susceptibility to leaching into the soil profile. OCPs are characterized by a high half-life time, which affect their significantly higher persistence in soils resulting from affinity to the soil organic phase.


Assuntos
Agricultura , Resíduos de Praguicidas/análise , Solo/química , Monitoramento Ambiental
10.
J Hazard Mater ; 368: 274-280, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685715

RESUMO

A few previous studies showed that the low soil moisture could interact with the toxic effect of the polycyclic aromatic hydrocarbons (PAHs) towards animals (mostly invertebrates). In the present research the impact of the soil moisture in the wide range (from the drought to high moisture conditions) in three different soil materials on toxic effect of the PAH (phenanthrene) towards soil microorganisms (nitrifying bacteria activity) was evaluated. The three dry soil materials were artificially contaminated with phenanthrene (0, 1, 10, 100 and 1000 mg kg-1 dry mass of soil) and moistened to the varied levels of the soil moisture (30% WHC (dry), 55% WHC (optimal) and 80% WHC (highly wet conditions)). After 7 days incubation, the nitrification potential was measured. The results of the proposed ANCOVA multiple regression model (adjusted R2 = 0.91), showed that the increase of soil moisture enhanced the toxicity of the phenanthrene towards nitrification potential and this combined moisture-phenanthrene effect was soil dependent. Therefore, the effect of the soil moisture in combination with the soil diversity should not be missed in the ecotoxicological risk assessment of the PAHs.


Assuntos
Secas , Nitrosomonas/efeitos dos fármacos , Fenantrenos/toxicidade , Microbiologia do Solo/normas , Poluentes do Solo/toxicidade , Solo/química , Biodegradação Ambiental , Modelos Teóricos , Nitrificação , Nitrosomonas/crescimento & desenvolvimento , Polônia , Molhabilidade
11.
Int J Phytoremediation ; 21(4): 325-333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648417

RESUMO

The impact of contaminated bottom sediments on plant growth and soil enzyme activities was evaluated in a greenhouse pot study. The sediments were moderately contaminated with zinc and heavily contaminated with polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans. The sediments were mixed with soil and planted with either Festuca arundinacea or Tagetes patula. The capacity of two rhizobacterial strains (Massilia niastensis P87 and Streptomyces costaricanus RP92), previously isolated from contaminated soils, to improve plant growth under the chemical stress was tested. Application of sediments to soil was severely phytotoxic to T. patula and mildly to F. arundinacea. On the other hand, the addition of sediments enhanced the soil enzymatic activity. Inoculation with both bacterial strains significantly increased shoot (up to 2.4-fold) and root (up to 3.4-fold) biomass of T. patula. The study revealed that the selected plant growth-promoting bacterial strains were able to alleviate phytotoxicity of bottom sediments to T. patula resulting from the complex character of the contamination.


Assuntos
Poluentes do Solo/análise , Solo , Biodegradação Ambiental , Desenvolvimento Vegetal , Raízes de Plantas/química , Microbiologia do Solo
12.
Environ Geochem Health ; 41(3): 1369-1385, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30467649

RESUMO

The aim of the study was ecological risk assessment (ERA) of the agricultural soils located in the vicinity of the highly industrialized area and exposed to different emission sources of polycyclic aromatic hydrocarbons (PAHs). In this study, we demonstrated the combination of generic and site-specific ERA approach for screening assessment and delineation of the area of a high ecological risk. Generic approach was based on a hazard quotient and indicated that 62% of the research area needs further assessment. For site-specific evaluation, the Triad approach was utilized. Information from three lines of evidence (LoE): chemical, ecotoxicological and ecological, was integrated into one environmental risk (EnvRI) index. The chemical risk was derived from toxic pressure coefficients based on the total PAHs concentration. The ecotoxicological LoE included an acute toxicity testing: the luminescent bacteria Aliivibrio fischeri activity in both liquid- and solid-phase samples and the ability of crustacean Thamnocephalus platyurus to food uptake. The ecological LoE comprised microbial parameters related to soil respiration and enzymatic activity. Integrated EnvRI index ranged from 0.44 to 0.94 and was mainly influenced by high values of chemical LoE risk, while the ecotoxicological and ecological LoE indicated no or low risk. Due to the relatively high uncertainty associated with the contradictory information given by LoEs, there is the need to confirm potential risk in a tier 2 analysis.


Assuntos
Ecotoxicologia/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco/métodos , Poluentes do Solo/análise , Agricultura , Aliivibrio fischeri/efeitos dos fármacos , Animais , Crustáceos/efeitos dos fármacos , Monitoramento Ambiental , Polônia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Testes de Toxicidade Aguda
13.
Front Microbiol ; 9: 1923, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186255

RESUMO

Soil contamination with petroleum, especially in the area of oil wells, is a serious environmental problem. Restoring soil subjected to long-term pollution to its original state is very difficult. Under such conditions, unique bacterial communities develop in the soil that are adapted to the contaminated conditions. Analysis of the structure and function of these microorganisms can be a source of valuable information with regard to bioremediation. The aim of this study was to evaluate structural and functional diversity of the bacterial communities in soils with long-term impacts from petroleum. Samples were taken from the three oldest oil wells at the Crude Oil Mine site in Weglówka, Poland; the oldest was established in 1888. They were collected at 2 distances: (1) within a radius of 0.5 m from the oil wells, representing soil strongly contaminated with petroleum; and (2) 3 m from the oil wells as the controls. The samples were analyzed by 16S rRNA sequencing and the community level physiological profiling (CLPP) method in order to better understand both the genetic and functional structure of soil collected from under oil wells. Significant differences were found in the soil samples with regard to bacterial communities. The soils taken within 0.5 m of the oil wells were characterized by the highest biodiversity indexes. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria were strongly correlated with biological activity in these soils. Families of Alphaproteobacteria were also dominant, including: Bradyrhizobiaceae, Rhizobiaceae, Rhodobacteraceae, Acetobacteraceae, Hyphomicrobiaceae, and Sphingomonadaceae. The study showed that the long term contamination of soil changes bacterial communities and their metabolic activity. Even so, natural bioremediation leads to the formation of specific groups of bacteria that actively grow at the site of contamination in the soil.

14.
Environ Sci Pollut Res Int ; 24(12): 10955-10965, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27068894

RESUMO

The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 µg kg-1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (Corg) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg-1), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/Corg or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.


Assuntos
Agricultura , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo , Polônia
15.
Environ Pollut ; 216: 911-918, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27394082

RESUMO

This study focused on the combined effect of environmental conditions (temperature) and contamination (polycyclic aromatic hydrocarbons, PAHs) on the activity of soil microorganisms (nitrifying bacteria). Phenanthrene (Phe) at five contamination levels (0, 1, 10, 100 and 1000 mg kg(-1) dry mass of soil) was employed as a model PAH compound in laboratory experiments that were conducted at three temperatures (i.e., 20 °C (recommended by ISO 15685 method), 15 and 30 °C). Three soils with different properties were used in these studies, and the activity of the nitrifying bacteria was assessed based on nitrification potential (NP) determinations. For the statistical evaluation of the results, the ANCOVA (analysis of covariance) method for three independent variables (i.e., temperature, phenanthrene concentration, soil matrix (as a qualitative variable)) and their interactions was employed. The results indicated on the significant interaction of all studied factors. Temperature influenced the toxicity of Phe towards NP, and this effect was related to the Phe concentration as well as was varied for the different soils. A low content of soil organic matter (controlling bioavailability of phenanthrene to soil microorganisms) enhanced the combined effect of temperature and Phe toxicity, and a high biological activity of the soil (high NP values) increased the effect of high temperature on the Phe stimulatory influence. The results indicate that the temperature should not be neglected in tests evaluating PAH ecotoxicity, especially for reliable ecological risk assessment.


Assuntos
Fixação de Nitrogênio/efeitos dos fármacos , Fenantrenos/toxicidade , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Temperatura , Bactérias/efeitos dos fármacos , Disponibilidade Biológica , Modelos Teóricos , Fenantrenos/análise , Suíça
16.
Environ Monit Assess ; 185(12): 9935-48, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23877573

RESUMO

The concentrations and composition of persistent organic pollutants (POPs) were determined in alluvial soils subjected to heavy flooding in a rural region of Poland. Soil samples (n = 30) were collected from the upper soil layer from a 70-km(2) area. Chemical determinations included basic physicochemical properties and the contents of polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polycyclic aromatic hydrocarbons (PAHs, 16 compounds). The median concentrations of Σ7PCB (PCB28 + PCB52 + PCB101 + PCB118 + PCB138 + PCB153 + PCB180), Σ3HCH (α-HCH + ß-HCH + γ-HCH) and Σ3pp'(DDT + DDE + DDD) were 1.60 ± 1.03, 0.22 ± 0.13 and 25.18 ± 82.70 µg kg(-1), respectively. The median concentrations of the most abundant PAHs, phenanthrene, fluoranthene, pyrene, benzo[b]fluoranthene and benzo[a]pyrene were 50 ± 37, 38 ± 27, 29 ± 30, 45 ± 36 and 24 ± 22 µg kg(-1), respectively. Compared with elsewhere in the world, the overall level of contamination with POPs was low and similar to the levels in agricultural soils from neighbouring countries, except for benzo[a]pyrene and DDT. There was no evidence that flooding affected the levels of POPs in the studied soils. The patterns observed for PAHs and PCBs indicate that atmospheric deposition is the most important long-term source of these contaminants. DDTs were the dominant organochlorine pesticides (up to 99%), and the contribution of the parent pp' isomer was up to 50 % of the ΣDDT, which indicates the advantage of aged contamination. A high pp'DDE/pp'DDD ratio suggests the prevalence of aerobic transformations of parent DDT. Dominance of the γ isomer in the HCHs implies historical use of lindane in the area. The effect of soil properties on the POP concentrations was rather weak, although statistically significant links with the content of the <0.02-mm fraction, Ctotal or Ntotal were observed for some individual compounds in the PCB group.


Assuntos
Monitoramento Ambiental , Inundações , Poluentes do Solo/análise , Solo/química , Agricultura , Hexaclorocicloexano/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Polônia , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
17.
Sci Total Environ ; 407(12): 3746-53, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19321189

RESUMO

Soils from agricultural areas receive unsatisfactory attention as regards the contamination with organic pollutants. To answer those needs the contents of the sixteen individual PAH compounds were determined (GC/MS technique) in agricultural soils in Poland. The samples (n=216) were collected from the upper layer of arable land in the year 2005. Half of the samples represented typical rural areas, while the rest derived from the territories potentially subjected to the urban/industrial pressure of various intensity. The mean (geometric) content of individual compounds varied from 1 microg kg(-1) for acenaphtylene to 55 microg kg(-1) for fluoranthene with the highest contributions (11.6%-12.9%) of phenanthrene, fluoranthene and pyrene. Higher molecular weight PAHs (4 rings) were strongly linked mutually and with the summation operator 16PAHs. They contributed substantially (73%) to the overall content of PAHs, which implies domination of anthropogenic sources. The calculated molecular indexes suggest that most of those PAHs derive from the combustion of coal, the main energy source in Poland. Simultaneously, the concentrations of lower molecular weight compounds seem to reflect the background, "natural" PAH compounds, which represent mainly atmospherically distributed emission. The division of the samples into groups describing geographical regions and landscape type enabled evaluation of the spatial trends in contamination of soils with PAH compounds. The most pronounced effect of spatial parameters corresponded to PAHs >4 rings, while lower molecular weight compounds showed more homogeneous concentration through the country.


Assuntos
Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/análise , Agricultura , Monitoramento Ambiental , Geografia , Sedimentos Geológicos/química , Polônia
18.
Chemosphere ; 73(8): 1284-91, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18718635

RESUMO

The paper provides comprehensive information on the level of contamination of arable soils in Poland with polycyclic aromatic hydrocarbons (PAHs). Extensive monitoring studies were carried out to determine the content of the 16 priority PAHs in 216 soil samples collected in 2005 throughout arable lands (0-20 cm layer) in Poland. Locations of sampling points reflected the differences in regional industrialisation and urbanisation as well as in the characteristics of soils. The content of Sigma16PAHs ranged from 80 to 7264 microg kg(-1) with a median of 395 microg kg(-1) and with a dominance of 4-6 rings hydrocarbons (74% of total PAHs). Soil properties affected the PAHs content to a limited extend. The organic matter content was the only parameter correlated significantly (although weakly) with the concentrations of Sigma16PAHs; the strength of this relationship was more pronounced in soils with elevated OM content. The various molecular markers pointed to a prevailing pyrogenic origin of the PAHs in Polish arable soils, with minor contribution from liquid fuels combustion and traffic emissions. Two different Polish systems for classification of agricultural soils (providing for the content of Sigma9PAHs and Sigma13PAHs) indicate that the percentage of contaminated arable soils in Poland does not exceed 10%. Multivariate methods enabled an evaluation of spatial trends in Sigma16PAHs concentrations, an identification of regions with very low PAHs content (East part of the country), and a recognition of small industrial/urbanised areas of higher risk.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/análise , Polônia , Análise de Componente Principal , Controle Social Formal
19.
Environ Geochem Health ; 30(2): 183-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18239995

RESUMO

The Tenax TA extraction technique followed by gas chromatography mass spectrometry (GC-MS) determinations was used to assess the actually bioavailable fraction of phenanthrene (ABF-Phe) in three different soils freshly contaminated with this compound at levels of 10, 100, and 1,000 mg kg(-1). The results were related to the ecotoxic effect of phenanthrene on soil nitrifying bacteria. Nitrification potential measurements were applied as an ecotoxicity end point. A strong positive linear relationship (r2 = 0.95) was obtained between the content of the actually bioavailable phenanthrene fraction and the inhibition of nitrifying bacteria activity.


Assuntos
Fenantrenos/química , Polímeros/química , Poluentes do Solo/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Nitritos/metabolismo , Fenantrenos/metabolismo , Fenantrenos/toxicidade , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
20.
J Environ Qual ; 36(6): 1635-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17940263

RESUMO

Information on ecotoxicity of organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in terrestrial environment is needed for establishing soil quality criteria and for risk assessment purposes. An ecotoxic effect of a model PAH compound (phenanthrene) toward soils microorganisms (nitrifying bacteria) was evaluated in 50 different soils. The soil samples were collected from agricultural land in four regions of Poland with varying levels of industrialization (Slaskie, Dolnoslaskie, Podlaskie, and Lubelskie voievodeships). Soils were characterized for basic physicochemical properties (texture, organic matter content, pH(KCl), total nitrogen content, total sorption capacity) and the content of contaminants including PAHs (73-800 microg kg(-1)), Pb (6-720 mg kg(-1)), and Zn (9-667 mg kg(-1)). Ecotoxicity of phenanthrene (applied at 10, 100, 500, and 1000 mg kg(-1)) to soils microorganisms was evaluated in laboratory studies in control conditions (incubation of soils for 7 d at 20 +/- 2 degrees C). Nitrification potential was used as the ecotoxicity measurements end point. The EC50 values (146-1670 mg kg(-1)) calculated from the square root-X linear regression model differed significantly in various soils, although it was difficult to establish a causative relationship between soil physicochemical characteristic and phenanthrene toxicity. A significant factor in the assessment of soils vulnerability to the effect of phenanthrene was level of soil contamination, particularly with PAHs. Soils with previous contamination were more susceptible (mean EC50, 325 mg kg(-1)) than soils from uncontaminated, rural areas (mean EC50, 603 mg kg(-1)).


Assuntos
Fixação de Nitrogênio/efeitos dos fármacos , Fenantrenos/farmacologia , Microbiologia do Solo , Fenômenos Químicos , Físico-Química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA