Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401386

RESUMO

The loggerhead turtle (Caretta caretta) has been suggested as a bio-indicator species for plastic pollution. However, detailed investigations in the eastern Mediterranean are limited. Here, we present data from loggerhead turtles (2012-2022; n = 131) of which 42.7 % (n = 57) had ingested macroplastic (pieces ≥ 5 mm). Frequency of occurrence (%) was not found to have changed over time, with body size (CCL cm), between stranded or bycaught turtles, or with levels of digesta present. The characteristics of ingested plastic (n = 492) were largely sheetlike (62 %), clear (41 %) or white (25 %) and the most common polymers identified were Polypropylene (37 %) and Polyethylene (35 %). Strong selectivity was displayed towards certain types, colours and shapes. Data are also presented for posthatchling turtles (n = 4), an understudied life stage. Much larger sample sizes will be needed for this species to be an effective bio-indicator, with the consideration of monitoring green turtles (Chelonia mydas) for the eastern Mediterranean recommended allowing a more holistic picture to be gathered.


Assuntos
Tartarugas , Animais , Conteúdo Gastrointestinal , Plásticos , Poluição Ambiental , Monitoramento Ambiental
2.
Proc Natl Acad Sci U S A ; 120(30): e2220747120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459551

RESUMO

"Protect and restore ecosystems and biodiversity" is the second official aim of the current UN Ocean Decade (2021 to 2030) calling for the identification and protection of critical marine habitats. However, data to inform policy are often lacking altogether or confined to recent times, preventing the establishment of long-term baselines. The unique insights gained from combining bioarchaeology (palaeoproteomics, stable isotope analysis) with contemporary data (from satellite tracking) identified habitats which sea turtles have been using in the Eastern Mediterranean over five millennia. Specifically, our analysis of archaeological green turtle (Chelonia mydas) bones revealed that they likely foraged on the same North African seagrass meadows as their modern-day counterparts. Here, millennia-long foraging habitat fidelity has been directly demonstrated, highlighting the significance (and long-term dividends) of protecting these critical coastal habitats that are especially vulnerable to global warming. We highlight the potential for historical ecology to inform policy in safeguarding critical marine habitats.


Assuntos
Alismatales , Comportamento Animal , Ecossistema , Espécies em Perigo de Extinção , Tartarugas , Animais , Biodiversidade , Ecologia , África do Norte , Mar Mediterrâneo , Região do Mediterrâneo
3.
Environ Pollut ; 316(Pt 1): 120482, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279995

RESUMO

Sea turtles are considered pollution bioindicators due to their tendency to accumulate high metal levels in their tissues during their long lifespans. In this context, we aimed to analyse the concentrations of 12 elements in liver, kidney, heart and muscle samples from green turtles (Chelonia mydas; n = 41) and loggerhead turtles (Caretta caretta; n = 14) found stranded in Northern Cyprus. The samples were collected between 2019 and 2021, stored in sterile Eppendorf tubes at -20 °C until metal analysis, and analysed with an inductively coupled plasma mass spectrometer. With this study, we contribute to the limited number of studies on metal accumulation in heart tissue and present the first data for Mg accumulation in the heart, liver, muscle and kidney tissues of both species. We found that metal accumulation levels differed among the two study species' tissues, with some elements in the same tissue (AlKidney, AsHeart, AsLiver, FeMuscle, FeKidney, FeHeart, MnHeart, PbHeart, ZnMuscle and ZnKidney) significantly differing between species. The observed variation likely resulted from their different feeding habits, which cause them to be exposed to different levels of metals. We also found significant associations among elements within tissues, as well as between the same element across different tissues in both species, which may indicate the differential accumulation of elements among organs due to physiological processes in turtle metabolism, bioaccumulation or excretion.


Assuntos
Metais Pesados , Tartarugas , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Chipre , Metais Pesados/análise , Fígado/metabolismo
4.
Sci Rep ; 9(1): 11581, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399637

RESUMO

Understanding the drivers of key interactions between marine vertebrates and plastic pollution is now considered a research priority. Sea turtles are primarily visual predators, with the ability to discriminate according to colour and shape; therefore these factors play a role in feeding choices. Classification methodologies of ingested plastic currently do not record these variables, however here, refined protocols allow us to test the hypothesis that plastic is selectively ingested when it resembles the food items of green turtles (Chelonia mydas). Turtles in the eastern Mediterranean displayed strong diet-related selectivity towards certain types (sheet and threadlike), colours (black, clear and green) and shapes (linear items strongly preferred) of plastic when compared to the environmental baseline of plastic beach debris. There was a significant negative relationship between size of turtle (curved carapace length) and number/mass of plastic pieces ingested, which may be explained through naivety and/or ontogenetic shifts in diet. Further investigation in other species and sites are needed to more fully ascertain the role of selectivity in plastic ingestion in this marine vertebrate group.


Assuntos
Plásticos/metabolismo , Tartarugas/fisiologia , Ração Animal/análise , Animais , Dieta , Ingestão de Alimentos , Comportamento Alimentar , Região do Mediterrâneo
5.
Mov Ecol ; 7: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723544

RESUMO

BACKGROUND: Telemetry and biologging systems, 'tracking' hereafter, have been instrumental in meeting the challenges associated with studying the ecology and behaviour of cryptic, wide-ranging marine mega-vertebrates. Over recent decades, globally, sea turtle tracking has increased exponentially, across species and life-stages, despite a paucity of studies investigating the effects of such devices on study animals. Indeed, such studies are key to informing whether data collected are unbiased and, whether derived estimates can be considered typical of the population at large. METHODS: Here, using a 26-year individual-based monitoring dataset on sympatric green (Chelonia mydas) and loggerhead (Caretta caretta) turtles, we provide the first analysis of the effects of device attachment on reproduction, growth and survival of nesting females. RESULTS: We found no significant difference in growth and reproductive correlates between tracked and non-tracked females in the years following device attachment. Similarly, when comparing pre- and post-tracking data, we found no significant difference in the reproductive correlates of tracked females for either species or significant carry-over effects of device attachment on reproductive correlates in green turtles. The latter was not investigated for loggerhead turtles due to small sample size. Finally, we found no significant effects of device attachment on return rates or survival of tracked females for either species. CONCLUSION: While there were no significant detrimental effects of device attachment on adult sea turtles in this region, our study highlights the need for other similar studies elsewhere and the value of long-term individual-based monitoring.

6.
Glob Chang Biol ; 25(2): 744-752, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513551

RESUMO

Despite concerns regarding the environmental impacts of microplastics, knowledge of the incidence and levels of synthetic particles in large marine vertebrates is lacking. Here, we utilize an optimized enzymatic digestion methodology, previously developed for zooplankton, to explore whether synthetic particles could be isolated from marine turtle ingesta. We report the presence of synthetic particles in every turtle subjected to investigation (n = 102) which included individuals from all seven species of marine turtle, sampled from three ocean basins (Atlantic [ATL]: n = 30, four species; Mediterranean (MED): n = 56, two species; Pacific (PAC): n = 16, five species). Most particles (n = 811) were fibres (ATL: 77.1% MED: 85.3% PAC: 64.8%) with blue and black being the dominant colours. In lesser quantities were fragments (ATL: 22.9%: MED: 14.7% PAC: 20.2%) and microbeads (4.8%; PAC only; to our knowledge the first isolation of microbeads from marine megavertebrates). Fourier transform infrared spectroscopy (FT-IR) of a subsample of particles (n = 169) showed a range of synthetic materials such as elastomers (MED: 61.2%; PAC: 3.4%), thermoplastics (ATL: 36.8%: MED: 20.7% PAC: 27.7%) and synthetic regenerated cellulosic fibres (SRCF; ATL: 63.2%: MED: 5.8% PAC: 68.9%). Synthetic particles being isolated from species occupying different trophic levels suggest the possibility of multiple ingestion pathways. These include exposure from polluted seawater and sediments and/or additional trophic transfer from contaminated prey/forage items. We assess the likelihood that microplastic ingestion presents a significant conservation problem at current levels compared to other anthropogenic threats.


Assuntos
Exposição Ambiental , Plásticos/análise , Tartarugas/fisiologia , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/fisiologia , Oceano Atlântico , Monitoramento Ambiental , Mar Mediterrâneo , Oceano Pacífico , Plásticos/classificação , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/classificação
7.
Glob Chang Biol ; 25(2): 753-762, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30430701

RESUMO

Climate change associated sea-level rise (SLR) is expected to have profound impacts on coastal areas, affecting many species, including sea turtles which depend on these habitats for egg incubation. Being able to accurately model beach topography using digital terrain models (DTMs) is therefore crucial to project SLR impacts and develop effective conservation strategies. Traditional survey methods are typically low-cost with low accuracy or high-cost with high accuracy. We present a novel combination of drone-based photogrammetry and a low-cost and portable real-time kinematic (RTK) GPS to create DTMs which are highly accurate (<10 cm error) and visually realistic. This methodology is ideal for surveying coastal sites, can be broadly applied to other species and habitats, and is a relevant tool in supporting the development of Specially Protected Areas. Here, we applied this method as a case-study to project three SLR scenarios (0.48, 0.63 and 1.20 m) and assess the future vulnerability and viability of a key nesting habitat for sympatric loggerhead (Caretta caretta) and green turtle (Chelonia mydas) at a key rookery in the Mediterranean. We combined the DTM with 5 years of nest survey data describing location and clutch depth, to identify (a) regions with highest nest densities, (b) nest elevation by species and beach, and (c) estimated proportion of nests inundated under each SLR scenario. On average, green turtles nested at higher elevations than loggerheads (1.8 m vs. 1.32 m, respectively). However, because green turtles dig deeper nests than loggerheads (0.76 m vs. 0.50 m, respectively), these were at similar risk of inundation. For a SLR of 1.2 m, we estimated a loss of 67.3% for loggerhead turtle nests and 59.1% for green turtle nests. Existing natural and artificial barriers may affect the ability of these nesting habitats to remain suitable for nesting through beach migration.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental/métodos , Comportamento de Nidação , Tartarugas/fisiologia , Aeronaves , Animais , Monitoramento Ambiental/instrumentação , Sistemas de Informação Geográfica/instrumentação , Fotogrametria/métodos
8.
Mar Pollut Bull ; 136: 334-340, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30509815

RESUMO

We sampled 17 nesting sites for loggerhead (Caretta caretta) and green turtles (Chelonia mydas) in Cyprus. Microplastics (<5 mm) were found at all locations and depths, with particularly high abundance in superficial sand. The top 2 cm of sand presented grand mean ±â€¯SD particle counts of 45,497 ±â€¯11,456 particles m-3 (range 637-131,939 particles m-3). The most polluted beaches were among the worst thus far recorded, presenting levels approaching those previously recorded in Guangdong, South China. Microplastics decreased with increasing sand depth but were present down to turtle nest depths of 60 cm (mean 5,325 ±â€¯3,663 particles m-3. Composition varied among beaches but hard fragments (46.5 ±â€¯3.5%) and pre-production nurdles (47.8 ±â€¯4.5%) comprised most categorised pieces. Particle drifter analysis hindcast for 365 days indicated that most plastic likely originated from the eastern Mediterranean basin. Worsening microplastic abundance could result in anthropogenically altered life history parameters such as hatching success and sex ratios in marine turtles.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Plásticos/análise , Água do Mar/química , Tartarugas/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Animais , Chipre , Feminino , Masculino , Mar Mediterrâneo , Plásticos/toxicidade , Razão de Masculinidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA