Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 43(1): 107-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25301937

RESUMO

Understanding drug glucuronidation in the dog, a preclinical animal, is important but currently poorly characterized at the level of individual enzymes. We have constructed cDNAs for the 10 dog UDP-glucuronosyltransferases of subfamily 1A (dUGT1As), expressed them in insect cells, and assayed their activity as well as the activity of the nine human UGT1As, toward 14 compounds. The goal was to find out whether individual dUGT1As and individual human UGT1As have similar substrate specificities. The results revealed similarities but also many differences. For example, similarly to the human UGT1A10, dUGT1A11 exhibited high glucuronidation activity toward the 3-OH of 17-ß-estradiol, 17-α-estradiol, and ethinylestradiol, and also conjugated the drug entacapone. Unlike the human UGT1A10, however, it failed to catalyze considerable rates of R-propranolol, diclofenac, and indomethacin glucuronidation. The estrogen glucuronidation assays revealed that dUGT1A8 and dUGT1A10 have a capacity to catalyze the formation of (linked) diglucuronides, an activity no human UGT1A exhibited. dUGT1A2-dUGT1A4 are homologs of the human UGT1A4, but none of them catalyzed N-glucuronidation of dexmedetomidine. Contrary to the human UGT1A4, however, dUGT1A2-dUGT1A4 catalyzed indomethacin and diclofenac glucuronidation. It may be concluded that, perhaps with the exception of UGT1A6, high similarities in substrate specificity between individual dog and human UGTs of subfamily 1A are rare or partial. Activity assays with liver and intestine microsomes of both dog and human further revealed interspecies differences, particularly in glucuronidation rates. In the dog, the microsomes assays also strongly suggested important roles for dUGTs of other subfamilies, mainly in the liver.


Assuntos
DNA Complementar/genética , DNA Complementar/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Animais , Catálise , Clonagem Molecular/métodos , Diclofenaco/metabolismo , Cães , Estradiol/metabolismo , Glucuronídeos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Microssomos/metabolismo , Propranolol/metabolismo , Especificidade por Substrato/genética , Especificidade por Substrato/fisiologia
2.
Drug Metab Dispos ; 41(3): 582-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288867

RESUMO

The glucuronidation of estriol, 16-epiestriol, and 17-epiestriol by the human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B was examined. UGT1A10 is highly active in the conjugation of the 3-OH in all these estriols, whereas UGT2B7 is the most active UGT toward one of the ring D hydroxyls, the 16-OH in estriol and 16-epiestriol, but the 17-OH in 17-epiestriol. Kinetic analyses indicated that the 17-OH configuration plays a major role in the affinity of UGT2B7 for estrogens. The glucuronidation of the different estriols by the human liver and intestine microsomes reflects the activity of UGT1A10 and UGT2B7 in combination with the tissues' difference in UGT1A10 expression. The UGT1A10 mutant 1A10-F93G exhibited much higher V(max) values than UGT1A10 in estriol and 17-epiestriol glucuronidation, but a significantly lower value in 16-epiestriol glucuronidation. To this study on estriol glucuronidation we have added experiments with 13-epiestradiol, a synthetic estradiol in which the spatial arrangement of the methyl on C18 and the hydroxyl on C17 is significantly different than in other estrogens. In comparison with estradiol glucuronidation, the C13 configuration change decreases the turnover of UGTs that conjugate the 3-OH, but increases it in UGTs that primarily conjugate the 17-OH. Unexpectedly, UGT2B17 exhibited similar conjugation rates of both the 17-OH and 3-OH of 13-espiestradiol. The combined results reveal the strong preference of UGT1A10 for the 3-OH of physiologic estrogens and the equivalently strong preference of UGT2B7 and UGT2B17 for the hydroxyls on ring D of such steroid hormones.


Assuntos
Estradiol/metabolismo , Estriol/análogos & derivados , Glucuronosiltransferase/metabolismo , Biotransformação , Estradiol/análogos & derivados , Estradiol/química , Estriol/química , Estriol/metabolismo , Glucuronosiltransferase/genética , Humanos , Hidroxilação , Isoenzimas , Cinética , Antígenos de Histocompatibilidade Menor , Modelos Moleculares , Estrutura Molecular , Mutação , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Biochim Biophys Acta ; 1822(8): 1223-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22546842

RESUMO

As recently demonstrated in patients with factor IX deficiency, adeno-associated virus (AAV)-mediated liver-directed therapy is a viable option for inherited metabolic liver disorders. Our aim is to treat Crigler-Najjar syndrome type I (CN I), an inherited severe unconjugated hyperbilirubinemia, as a rare recessive inherited disorder. Because the number of patients eligible for this approach is small, the efficacy can only be demonstrated by a beneficial effect on the pathophysiology in individual patients. Serum bilirubin levels in potential candidates have been monitored since birth, providing an indication of their pathophysiology. Adjuvant phototherapy to prevent brain damage reduces serum unconjugated bilirubin (UCB) levels in CN I patients to the level seen in the milder form of the disease, CN type II. This therapy increases the excretion of UCB, thereby complicating the use of UCB and conjugated bilirubin levels in serum as biomarkers for the gene therapy we try to develop. Therefore, a suitable biomarker that is not affected by phototherapy is currently needed. To this end, we have investigated whether estradiol, ethinylestradiol or ezetimibe could be used as markers for uridine 5'-di-phospho-glucuronosyltransferase isoform 1A1 (UGT1A1) activity restored by AAV gene therapy in Gunn rats, a relevant animal model for CN I. Of these compounds, ezetimibe appeared most suitable because its glucuronidation rate in untreated control Gunn rats is low. Subsequently, ezetimibe glucuronidation was studied in both untreated and AAV-treated Gunn rats and the results suggest that it may serve as a useful serum marker for restored hepatic UGT1A1 activity.


Assuntos
Azetidinas/sangue , Síndrome de Crigler-Najjar/sangue , Síndrome de Crigler-Najjar/terapia , Terapia Genética/métodos , Glucuronosiltransferase/genética , Fígado/enzimologia , Animais , Azetidinas/administração & dosagem , Bilirrubina/sangue , Biomarcadores/sangue , Síndrome de Crigler-Najjar/enzimologia , Síndrome de Crigler-Najjar/genética , Modelos Animais de Doenças , Ezetimiba , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glucuronosiltransferase/biossíntese , Glucuronosiltransferase/metabolismo , Humanos , Hepatopatias/terapia , Masculino , Distribuição Aleatória , Ratos , Ratos Gunn
4.
J Steroid Biochem Mol Biol ; 127(3-5): 282-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21899827

RESUMO

Steroids enantiomers are interesting compounds for detailed exploration of drug metabolizing enzymes, such as the UDP-glucuronosyltransferases (UGTs). We have now studied the glucuronidation of the enantiomers of estradiol, androsterone and etiocholanolone by the 19 human UGTs of subfamilies 1A, 2A and 2B. The results reveal that the pattern of human UGTs of subfamily 2B that glucuronidate ent-17ß-estradiol, particularly 2B15 and 2B17, resembles the glucuronidation of epiestradiol (17α-estradiol) rather than 17ß-estradiol, the main physiological estrogen. The UGTs of subfamilies 1A and 2A exhibit higher degree of regioselectivity than enantioselectivity in the conjugation of these estradiols, regardless of whether the activity is primarily toward the non-chiral site, 3-OH (UGT1A1, UGT1A3, UGT1A7, UGT1A8 and, above all, UGT1A10), or the 17-OH (UGT1A4). In the cases of etiocholanolone and androsterone, glucuronidation of the ent-androgens, like the conjugation of the natural androgens, is mainly catalyzed by UGTs of subfamilies 2A and 2B. Nevertheless, the glucuronidation of ent-etiocholanolone and ent-androsterone by both UGT2B7 and UGT2B17 differs considerably from their respective activity toward the corresponding endogenous androgens, whereas UGT2A1-catalyzed conjugation is much less affected by the stereochemistry differences. Kinetic analyses reveal that the K(m) value of UGT2A1 for ent-estradiol is much higher than the corresponding value in the other two high activity enzymes, UGT1A10 and UGT2B7. Taken together, the results highlight large enantioselectivity differences between individual UGTs, particularly those of subfamily 2B.


Assuntos
Androsterona/metabolismo , Estradiol/metabolismo , Etiocolanolona/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Estereoisomerismo
5.
Steroids ; 76(13): 1465-73, 2011 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-21846474

RESUMO

Little is currently known about the substrate binding site of the human UDP-glucuronosyltransferases (UGTs) and the structural elements that affect their complex substrate selectivity. In order to further understand and extend our earlier findings with phenylalanines 90 and 93 of UGT1A10, we have replaced each of them with Gly, Ala, Val, Leu, Ile or Tyr, and tested the activity of the resulting 12 mutants toward eight different substrates. Apart from scopoletin glucuronidation, the F90 mutants other than F90L were nearly inactive, while the F93 mutants' activity was strongly substrate dependent. Hence, F93L displayed high entacapone and 1-naphthol glucuronidation rates, whereas F93G, which was nearly inactive in entacapone glucuronidation, was highly active toward estradiol, estriol and even ethinylestradiol, a synthetic estrogen that is a poor substrate for the wild-type UGT1A10. Kinetic analyses of 4-nitrophenol, estradiol and ethinylestradiol glucuronidation by the mutants that catalyzed the respective reactions at considerable rates, revealed increased K(m) values for 4-nitrophenol and estradiol in all the mutants, whilst the K(m) values of F93G and F93A for ethinylestradiol were lower than in control UGT1A10. Based on the activity results and a new molecular model of UGT1A10, it is suggested that both F90 and F93 are located in a surface helix at the far end of the substrate binding site. Nevertheless, only F93 directly affects the selectivity of UGT1A10 toward large and rigid estrogens, particularly those with substitutions at the D ring. The effects of F93 mutations on the glucuronidation of smaller or less rigid substrates are indirect, however.


Assuntos
Estrogênios/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Fenilalanina , Álcoois/metabolismo , Sequência de Aminoácidos , Cumarínicos/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
6.
Hum Mutat ; 31(1): 52-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19830808

RESUMO

Crigler-Najjar syndrome (CN), caused by deficiency of UGT isoform 1A1 (UGT1A1), is characterized by severe unconjugated hyperbilirubinemia. In this study we have analyzed 19 CN patients diagnosed in The Netherlands (18) and in Belgium (1), and have identified 14 different UGT1A1 mutations, four of which are novel. Two mutations were present in several unrelated patients, suggesting the presence of two founder effects in The Netherlands. In addition, we show linkage of the UGT1A1 *28 promoter polymorphism (rs5719145insTA) to three structural mutations. Functional studies of partial active UGT1A1 mutants are limited. Therefore, we performed in vitro studies to determine the functional activity of seven missense mutants identified in this study and of three reported previously. In addition to bilirubin, we also determined their activity toward eight other UGT1A1 substrates. We demonstrate that five mutants have residual activity that, depending on the substrate, varies from not detectable to 94% of wild-type UGT1A1 activity. The identification of four novel pathogenic mutations and the analysis of residual activity of 10 UGT1A1 missense mutants are useful for clinical diagnosis, and provides new insights in enzyme activity, whereas the identification of two founder mutations will speed up genetic counseling for newly identified CN patients in The Netherlands.


Assuntos
Alelos , Síndrome de Crigler-Najjar/genética , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Mutação de Sentido Incorreto , Adolescente , Adulto , Animais , Bélgica , Bilirrubina/metabolismo , Células Cultivadas , Síndrome de Crigler-Najjar/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Genótipo , Humanos , Hiperbilirrubinemia/genética , Insetos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo , Adulto Jovem
7.
Pharmacogenet Genomics ; 19(12): 923-34, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19858781

RESUMO

OBJECTIVES: Characterize the expression and glucuronidation activities of the human uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) 2A2. METHOD: UGT2A1 was cloned from nasal mucosa mRNA. Synthetic cDNA for UGT2A2 was constructed assuming exon sharing between UGT2A1 and UGT2A2 (Mackenzie et al., Pharmacogenetics and Genomics 2005, 15:677-685). Exon 1 of UGT2A2 was amplified from genomic DNA and combined with exons 2-6 of UGT2A1. UGT2A3 was cloned from liver mRNA. Quantitative reverse-transcribed-PCR (RT-PCR) was used to evaluate the expression of all the three UGTs of subfamily 2A in different tissues. Recombinant UGT2A1, UGT2A2 and UGT2A3 were expressed in baculovirus-infected insect cells and analyzed for glucuronidation activity towards different substrates. RESULTS: DNA sequencing of RT-PCR products from human nasal mucosa mRNA, confirmed exon sharing between UGT2A1 and UGT2A2. In addition, it indicated that the N-terminal signal peptide sequence of UGT2A2 is the longest among the human UGTs. Quantitative RT-PCR revealed that both UGT2A1 and UGT2A2 are mainly expressed in the nasal mucosa, and that their expression level in fetal samples was much higher than in adults. Activity assays with recombinant UGTs 2A1-2A3 showed broad substrate selectivity for UGT2A1 and UGT2A2. Although glucuronidation rates and substrate affinities were mostly higher in UGT2A1, the Km values for UDP-glucuronic acid were similar in both UGTs. In addition, there were regioselectivity differences between the two UGTs and, with a few substrates, particularly ethinylestradiol, the activity of UGT2A2 was higher. CONCLUSION: UGT2A2 is mainly expressed in the nasal mucosa and it has glucuronidation activity towards several different endobiotic and xenobiotic substrates.


Assuntos
Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Mucosa Nasal/enzimologia , Adulto , Sequência de Aminoácidos , Clonagem Molecular , Feminino , Feto/enzimologia , Regulação Enzimológica da Expressão Gênica , Glucuronosiltransferase/química , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA