Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 16(5): 571-83, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15916482

RESUMO

Regulated secretory pathway proteins, when delivered as transgenes to salivary glands, are secreted predominantly into saliva. This is not useful for those proteins whose therapeutic function is required systemically, for example, human growth hormone (hGH). One strategy to improve the efficiency of hGH secretion into the bloodstream involves manipulation of existing sorting signals. The C terminus of hGH is highly conserved and contains a domain similar to the regulated pathway sorting domain of pro-opiomelanocortin (POMC). We hypothesized that, similar to POMC, mutation of this domain would divert hGH secretion from the regulated to the constitutive pathway, which in salivary glands leads to the bloodstream. Several mutations were made in the C terminus of the hGH cDNA and tested in vitro. One biologically active mutant containing E174A and E186A substitutions, and with an included C-terminal extension, was studied in greater detail. Compared with wild-type hGH, we found that this mutant hGH accumulated in the Golgi/trans-Golgi network and showed increased basal secretion in AtT20 cells, a model endocrine cell line. Importantly, in vivo, the mutant hGH displayed a relative increase in the proportion of constitutive pathway secretion seen from rat salivary glands, with a significantly lower saliva-versus-serum secretion ratio (p=0.03). Although this mutant is unlikely to be therapeutically beneficial, these results suggest that the final destination of a transgenic secretory protein may be controlled by reengineering its sorting determinants.


Assuntos
Hormônio do Crescimento Humano/metabolismo , Glândulas Salivares/metabolismo , Transgenes , Adenoviridae/genética , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Sequência Conservada , Hormônio do Crescimento Humano/genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Transdução Genética
2.
Neuron ; 45(2): 245-55, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-15664176

RESUMO

Activity-dependent secretion of BDNF is important in mediating synaptic plasticity, but how it is achieved is unclear. Here we uncover a sorting motif receptor-mediated mechanism for regulated secretion of BDNF. X-ray crystal structure analysis revealed a putative sorting motif, I(16)E(18)I(105)D(106), in BDNF, which when mutated at the acidic residues resulted in missorting of proBDNF to the constitutive pathway in AtT-20 cells. A V20E mutation to complete a similar motif in NGF redirected a significant proportion of it from the constitutive to the regulated pathway. Modeling and binding studies showed interaction of the acidic residues in the BDNF motif with two basic residues in the sorting receptor, carboxypeptidase E (CPE). (35)S labeling experiments demonstrated that activity-dependent secretion of BDNF from cortical neurons was obliterated in CPE knockout mice. Thus, we have identified a mechanism whereby a specific motif I(16)E(18)I(105)D(106) interacts with CPE to sort proBDNF into regulated pathway vesicles for activity-dependent secretion.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Carboxipeptidase H/metabolismo , Sistema Nervoso Central/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carboxipeptidase H/genética , Células Cultivadas , Córtex Cerebral/metabolismo , Cristalografia por Raios X , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação/genética , Hipófise/metabolismo , Ligação Proteica/genética , Transporte Proteico/fisiologia
3.
Biochemistry ; 42(35): 10445-55, 2003 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-12950171

RESUMO

The biosynthesis of most biologically active peptides involves the action of prohomone convertases, including PC3 (also known as PC1), that catalyze limited proteolysis of precursor proteins. Proteolysis of prohormones occurs mainly in the granules of the regulated secretory pathway. It has been proposed that the targeting of these processing enzymes to secretory granules involves their association with lipid rafts in granule membranes. We now provide evidence for the interaction of the 86 and 64 kDa forms of PC3 with secretory granule membranes. Furthermore, both forms of PC3 were resistant to extraction with TX-100, were floated to low-density fractions in sucrose gradients, and were partially extracted upon cholesterol depletion by methyl-beta-cyclodextrin, indicating that they were associated with lipid rafts in the membranes. Protease protection assays, immunolabeling, and biotinylation of proteins in intact secretory granules identified an approximately 115-residue cytoplasmic tail for 86 kDa PC3. Using two-dimensional gel electrophoresis and a specific antibody, a novel, raft-associated form of 64 kDa PC3 that contains a transmembrane domain consisting of residues 619-638 was identified. This form was designated as 64 kDa PC3-TM, and differs from the 64 kDa mature form of PC3. We present a model of the membrane topology of PC3, where it is anchored to lipid rafts in secretory granule membranes via the transmembrane domain. We demonstrate that the transmembrane domain of PC3 alone was sufficient to target the extracellular domain of the IL2 receptor alpha-subunit (Tac) to secretory granules.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Pró-Proteína Convertase 1 , Hormônio Adrenocorticotrópico/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/química , Bovinos , Linhagem Celular , Membrana Celular/química , Detergentes/química , Humanos , Microdomínios da Membrana/química , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Pró-Proteína Convertases , Estrutura Terciária de Proteína , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo , Alinhamento de Sequência
4.
Biochemistry ; 41(1): 52-60, 2002 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-11772002

RESUMO

Carboxypeptidase E (CPE) is a sorting receptor that directs the prohormone pro-opiomelanocortin (POMC) to the regulated secretory pathway, and is also a prohormone processing enzyme in neuro/endocrine cells. It has been suggested that the 25 C-terminal amino acids are necessary for the binding of CPE to secretory granule membranes, but its orientation in the membrane is not known. In this study, we examined the structure and orientation of the membrane-binding domain at the C-terminus of CPE. In vitro experiments using model membranes demonstrated that the last 22 amino acids of CPE (CP peptide) insert in a shallow orientation into lipid bilayers at low pH. Circular dichroism analysis indicated that the CP peptide adopts a partial alpha-helical configuration at low pH, and helix content increases when it is bound to lipid. Protease protection experiments, immunolabeling, and immunoisolation of intact secretory granules with a C-terminal antibody revealed a cytoplasmic domain in CPE, consistent with a transmembrane orientation of this protein. We conclude that the membrane-binding domain of CPE must adopt an alpha-helical configuration to bind to lipids, and that CPE may require another integral membrane "chaperone" protein to insert through the lipid bilayer in a transmembrane fashion.


Assuntos
Carboxipeptidases/metabolismo , Metabolismo dos Lipídeos , Acrilamida/química , Animais , Transporte Biológico , Carboxipeptidase H , Membrana Celular/metabolismo , Dicroísmo Circular , Grânulos Citoplasmáticos/metabolismo , Endopeptidases/química , Fluorescência , Separação Imunomagnética , Bicamadas Lipídicas , Lipídeos/análise , Camundongos , Modelos Moleculares , Fragmentos de Peptídeos , Pró-Opiomelanocortina/química , Conformação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA