Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958209

RESUMO

As the world warms, it will be tempting to relate the biological responses of terrestrial animals to air temperature. But air temperature typically plays a lesser role in the heat exchange of those animals than does radiant heat. Under radiant load, animals can gain heat even when body surface temperature exceeds air temperature. However, animals can buffer the impacts of radiant heat exposure: burrows and other refuges may block solar radiant heat fully, but trees and agricultural shelters provide only partial relief. For animals that can do so effectively, evaporative cooling will be used to dissipate body heat. Evaporative cooling is dependent directly on the water vapour pressure difference between the body surface and immediate surroundings, but only indirectly on relative humidity. High relative humidity at high air temperature implies a high water vapour pressure, but evaporation into air with 100% relative humidity is not impossible. Evaporation is enhanced by wind, but the wind speed reported by meteorological services is not that experienced by animals; instead, the wind, air temperature, humidity and radiation experienced is that of the animal's microclimate. In this Commentary, we discuss how microclimate should be quantified to ensure accurate assessment of an animal's thermal environment. We propose that the microclimate metric of dry heat load to which the biological responses of animals should be related is black-globe temperature measured on or near the animal, and not air temperature. Finally, when analysing those responses, the metric of humidity should be water vapour pressure, not relative humidity.


Assuntos
Microclima , Animais , Aquecimento Global , Regulação da Temperatura Corporal , Umidade , Temperatura
2.
Biol Lett ; 19(11): 20230331, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37935371

RESUMO

The order Lamniformes contains charismatic species such as the white shark Carcharodon carcharias and extinct megatooth shark Otodus megalodon, and is of particular interest given their influence on marine ecosystems, and because some members exhibit regional endothermy. However, there remains significant debate surrounding the prevalence and evolutionary origin of regional endothermy in the order, and therefore the development of phenomena such as gigantism and filter-feeding in sharks generally. Here we show a basal lamniform shark, the smalltooth sand tiger shark Odontaspis ferox, has centralized skeletal red muscle and a thick compact-walled ventricle; anatomical features generally consistent with regionally endothermy. This result, together with the recent discovery of probable red muscle endothermy in filter feeding basking sharks Cetorhinus maximus, suggests that this thermophysiology is more prevalent in the Lamniformes than previously thought, which in turn has implications for understanding the evolution of regional endothermy, gigantism, and extinction risk of warm-bodied shark species both past and present.


Assuntos
Gigantismo , Tubarões , Animais , Tubarões/fisiologia , Ecossistema , Prevalência , Músculo Esquelético
3.
Vet Clin Pathol ; 52(3): 417-421, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612252

RESUMO

BACKGROUND: Enterprise Point-of-Care (EPOC) blood analysis is used routinely in wildlife veterinary practice to monitor blood oxygenation, but the reliability of the EPOC calculated arterial oxygen-hemoglobin saturation (cSaO2 ) has never been validated in the white rhinoceros (Ceratotherium simum), despite their susceptibility to hypoxemia during chemical immobilization. OBJECTIVES: We aimed to evaluate the reliability of the EPOC cSaO2 by comparing it against arterial oxygen-hemoglobin saturation (SaO2 ) measured by a co-oximeter reference method in immobilized white rhinoceroses. METHODS: Male white rhinoceroses in two studies (both n = 8) were immobilized by darting with different etorphine-based drug combinations, followed by butorphanol or saline (administered intravenously). Animals in both studies received oxygen via intranasal insufflation after 60 min. Blood samples were drawn, at predetermined time points, from a catheter inserted into the auricular artery and analyzed using the EPOC and a co-oximeter. Bland-Altman (to estimate bias and precision) and area root mean squares (ARMS) plots were used to determine the reliability of the EPOC cSaO2 compared with simultaneous co-oximeter SaO2 readings. RESULTS: The rhinoceros were acidotic (pH of 7.3 ± 0.1 [mean ± standard deviation]), hypercapnic (PaCO2 of 73.7 ± 10.5 mmHg), and normothermic (body temperature of 37.4 ± 1.8°C). In total, 389 paired cSaO2 -SaO2 measurements were recorded (the cSaO2 ranged between 13.2% and 99.0%, and the SaO2 ranged between 11.8% and 99.9%). The EPOC cSaO2 readings were unreliable (inaccurate, imprecise, and poor ARMS) across the entire saturation range (bias -6%, precision 5%, and ARMS 8%). CONCLUSIONS: The EPOC cSaO2 is unreliable and should not be used to monitor blood oxygenation in immobilized white rhinoceroses.


Assuntos
Oxigênio , Sistemas Automatizados de Assistência Junto ao Leito , Masculino , Animais , Reprodutibilidade dos Testes , Artérias , Animais Selvagens
4.
Hear Res ; 428: 108679, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587457

RESUMO

The dimensions of auditory structures among animals of varying body size can have implications for hearing performance. Larger animals often have a hearing range focused on lower frequencies than smaller animals, which may be explained by several anatomical mechanisms in the ear and their scaling relationships. While the effect of size on ear morphology and hearing performance has been explored in some mammals, anurans and lizards, much less is known about the scaling relationships for the single-ossicle, internally-coupled ears of birds. Using micro- and nano-CT scans of the tympanic middle and inner ears of 127 ecologically and phylogenetically diverse bird species, spanning more than 400-fold in head mass (2.3 to 950 g), we undertook phylogenetically-informed scaling analyses to test whether 12 morphological traits, of functional importance to hearing, maintain their relative proportions with increasing head mass. We then extended our analysis by regressing these morphological traits with measures of hearing sensitivity and range to better understand morphological underpinnings of hearing performance. We find that most auditory structures scale together in equal proportions, whereas columella length increases disproportionately. We also find that the size of several auditory structures is associated with increased hearing sensitivity and frequency hearing limits, while head mass did not explain these measures. Although both birds and mammals demonstrate proportional scaling between auditory structures, the consequences for hearing in each group may diverge due to unique morphological predictors of auditory performance.


Assuntos
Orelha Interna , Audição , Animais , Orelha Média/diagnóstico por imagem , Orelha Média/anatomia & histologia , Mamíferos , Aves
5.
Vet Anaesth Analg ; 49(6): 650-655, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36151000

RESUMO

OBJECTIVES: To determine the reliability of peripheral oxygen haemoglobin saturation (SpO2), measured by a Nonin PalmSAT 2500A pulse oximeter with 2000T transflectance probes at four attachment sites (third eyelid, cheek, rectum and tail), by comparing these measurements to arterial oxygen haemoglobin saturation (SaO2), measured by an AVOXimeter 4000 co-oximeter reference method in immobilized white rhinoceros (Ceratotherium simum). STUDY DESIGN: Randomized crossover study. ANIMALS: A convenience sample of eight wild-caught male white rhinoceros. METHODS: White rhinoceros were immobilized with etorphine (0.0026 ± 0.0002 mg kg-1, mean ± standard deviation) intramuscularly, after which the pinna was aseptically prepared for arterial blood sample collection, and four pulse oximeters with transflectance probes were fixed securely to their attachment sites (third eyelid, cheek, rectum and tail). At 30 minutes following recumbency resulting from etorphine administration, the animals were given either butorphanol (0.026 ± 0.0001 mg kg-1) or an equivalent volume of saline intravenously. At 60 minutes following recumbency, insufflated oxygen (15 L minute-1 flow rate) was provided intranasally. In total, the SpO2 paired measurements from the third eyelid (n = 80), cheek (n = 67), rectum (n = 59) and tail (n = 76) were compared with near-simultaneous SaO2 measurements using Bland-Altman to assess bias (accuracy), precision, and the area root mean squares (ARMS) method. RESULTS: Compared with SaO2, SpO2 measurements from the third eyelid were reliable (i.e., accurate and precise) above an SaO2 range of 70% (bias = 1, precision = 3, ARMS = 3). However, SpO2 measurements from the cheek, rectum and tail were unreliable (i.e., inaccurate or imprecise). CONCLUSIONS AND CLINICAL RELEVANCE: A Nonin PalmSAT pulse oximeter with a transflectance probe inserted into the space between the third eyelid and the sclera provided reliable SpO2 measurements when SaO2 was > 70%, in immobilized white rhinoceros.


Assuntos
Etorfina , Oximetria , Masculino , Animais , Estudos Cross-Over , Reprodutibilidade dos Testes , Oximetria/veterinária , Oximetria/métodos , Perissodáctilos , Oxigênio , Hemoglobinas
6.
Sci Rep ; 12(1): 5251, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347167

RESUMO

Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing.


Assuntos
Aves , Orelha Média , Adaptação Fisiológica , Animais , Orelha , Orelha Média/anatomia & histologia , Audição
7.
Proc Biol Sci ; 289(1968): 20212461, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135343

RESUMO

This meta-study uses phylogenetic scaling models across more than 30 species, spanning five orders of magnitude in body mass, to show that cardiac capillary numerical density and mitochondrial volume density decrease with body mass raised to the -0.07 ± 0.03 and -0.04 ± 0.01 exponents, respectively. Thus, while an average 10 g mammal has a cardiac capillary density of approximately 4150 mm-2 and a mitochondrial density of 33%, a 1 t mammal has considerably lower corresponding values of 1850 mm-2 and 21%. These similar scaling trajectories suggest quantitative matching for the primary oxygen supply and oxygen consuming structures of the heart, supporting economic design at the cellular level of the oxygen cascade in this aerobic organ. These scaling trajectories are nonetheless somewhat shallower than the exponent of -0.11 calculated for the maximum external mechanical power of the cardiac tissue, under conditions of heavy exercise, when oxygen flow between capillaries and mitochondria is probably fully exploited. This mismatch, if substantiated, implies a declining external mechanical efficiency of the heart with increasing body mass, whereby larger individuals put more energy in but get less energy out, a scenario with implications for cardiovascular design, aerobic capacity and limits of body size.


Assuntos
Capilares , Elefantes , Animais , Humanos , Mitocôndrias , Oxigênio , Consumo de Oxigênio , Filogenia , Musaranhos
8.
Artigo em Inglês | MEDLINE | ID: mdl-34737157

RESUMO

Prominent ontogenetic changes of the gastrointestinal tract (GIT) should occur in mammals whose neonatal diet of milk differs from that of adults, and especially in herbivores (as vegetation is particularly distinct from milk), and even more so in foregut fermenters, whose forestomach only becomes functionally relevant with vegetation intake. Due to the protracted lactation in marsupials, ontogenetic differences can be particularly well investigated in this group. Here, we report body mass (BM) scaling relationships of wet GIT content mass in 28 in-pouch young (50 g to 3 kg) and 15 adult (16-70 kg) western grey kangaroos Macropus fuliginosus melanops. Apart from the small intestinal contents, in-pouch young and adults did not differ in the scaling exponents ('slope' in log-log plots) but did differ in the scaling factor ('intercept'), with an implied substantial increase in wet GIT content mass during the out-of-pouch juvenile period. In contrast to forestomach contents, caecum contents were elevated in juveniles still in the pouch, suggestive of fermentative digestion of milk and intestinal secretion residues, particularly in the caecum. The substantial increase in GIT contents (from less than 1 to 10-20% of BM) was associated mainly with the increase in forestomach contents (from 25 to 80% of total GIT contents) and a concomitant decrease in small intestine contents (from 50 to 8%), emphasizing the shifting relevance of auto-enzymatic and allo-enzymatic (microbial) digestion. There was a concomitant increase in the contents-to-tissue ratio of the fermentation chambers (forestomach and caecum), but this ratio generally did not change for the small intestine. Our study not only documents significant ontogenetic changes in digestive morpho-physiology, but also exemplifies the usefulness of intraspecific allometric analyses for quantifying these changes.


Assuntos
Conteúdo Gastrointestinal/química , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/fisiologia , Macropodidae/crescimento & desenvolvimento , Macropodidae/fisiologia , Animais , Fenômenos Fisiológicos do Sistema Digestório , Feminino , Fermentação/fisiologia , Masculino , Modelos Biológicos
9.
J Exp Zool A Ecol Integr Physiol ; 337(4): 356-365, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34971300

RESUMO

We used a high-precision weighing system and flow-through respirometry to quantify cutaneous evaporative water loss rates in woolly sheep (wool thickness, ca. 6.5 cm) and haired goats (coat thickness, ca. 2.5 cm), while simultaneously recording parallel data obtained from (1) a flow-through ventilated capsule, (2) a closed hand-held electronic evaporimeter chamber, and (3) a closed colorimetric paper disc chamber. In comparison to the weighing system and respirometry, used here as a "gold standard" measure of cutaneous evaporative water loss rate, we found relatively good agreement with data obtained from the flow-through ventilated capsules. However, we found poor agreement with data obtained from the closed electronic evaporimeter chambers (underestimated by 60%, on average) and the closed colorimetric paper disc chambers (overestimated by 52%, on average). This deviation was likely associated with a requirement for shaved skin in the closed chamber methods. Our results therefore cast doubt on the validity of the closed chamber methods for measurement of cutaneous evaporative water loss rates in furred and fleeced mammals, and instead show that more accurate values can be obtained using flow-through ventilated capsules.


Assuntos
Perda Insensível de Água , Água , Animais , Cápsulas , Mamíferos , Reprodutibilidade dos Testes , Ovinos , Perda Insensível de Água/fisiologia
10.
J Exp Biol ; 224(Pt Suppl 1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627465

RESUMO

Mammals in drylands are facing not only increasing heat loads but also reduced water and food availability as a result of climate change. Insufficient water results in suppression of evaporative cooling and therefore increases in body core temperature on hot days, while lack of food reduces the capacity to maintain body core temperature on cold nights. Both food and water shortage will narrow the prescriptive zone, the ambient temperature range over which body core temperature is held relatively constant, which will lead to increased risk of physiological malfunction and death. Behavioural modifications, such as shifting activity between night and day or seeking thermally buffered microclimates, may allow individuals to remain within the prescriptive zone, but can incur costs, such as reduced foraging or increased competition or predation, with consequences for fitness. Body size will play a major role in predicting response patterns, but identifying all the factors that will contribute to how well dryland mammals facing water and food shortage will cope with increasing heat loads requires a better understanding of the sensitivities and responses of mammals exposed to the direct and indirect effects of climate change.


Assuntos
Mudança Climática , Temperatura Alta , Animais , Tamanho Corporal , Regulação da Temperatura Corporal , Humanos , Mamíferos , Água
11.
J Comp Physiol B ; 191(2): 371-383, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491137

RESUMO

As an animal grows, the relative sizes of their organs may grow proportionately or disproportionately, depending on ontogenetic changes in function. If organ growth is proportional (isometric), then the exponent of the scaling equation is 1.0. Relative decreases or increases in size result in exponents less than 1 (hypoallometric) or greater than 1 (hyperallometric). Thus, the empirical exponent can indicate potential changes in function. The entire gastrointestinal tract (GIT) of the foregut-fermenting western grey kangaroo Macropus fuliginosus melanops exhibited biphasic allometry across five orders of magnitude body mass (Mb; 52.0 g-70.5 kg). Prior to weaning at around 12 kg Mb, the entire empty GIT mass scaled with hyperallometry (Mb1.13), shifting to hypoallometry (Mb0.80) post-weaning. In addition, there were varying patterns of hyper-, hypo-, and isometric scaling for select GIT organs, with several displaying phase shifts associated with major life-history events, specifically around exit from the maternal pouch and around weaning. Mass of the kangaroo forestomach, the main fermentation site, scaled with hyperallometry (Mb1.16) before the stage of increased vegetation intake, and possibly after this stage (Mb1.12; P = 0.07), accompanied by a higher scaling factor (elevation of the curve) probably associated with more muscle for processing fibrous vegetation. The acid hindstomach mass showed hyperallometry (Mb1.15) before weaning, but hypoallometry (Mb0.58) post-weaning, presumably associated with decreasing intake of milk. Small intestine mass and length each scaled isometrically throughout ontogeny, with no discernible breakpoints at any life-history stage. The caecum and colon mass were steeply hyperallometric early in-pouch life (Mb1.59-1.66), when the young were ectothermic, hairless, and supported solely by milk. After around 295 g Mb, caecum mass remained hyperallometric (Mb1.14), possibly supporting its early development as a nidus for microbial populations to provide for secondary fermentation in this organ after the young transition from milk to vegetation.


Assuntos
Trato Gastrointestinal , Macropodidae , Animais
12.
J Anat ; 237(3): 568-578, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32584456

RESUMO

This study assesses the functional morphology of the ankle extensor muscle-tendon units of the springhare Pedetes capensis, an African bipedal hopping rodent, to test for convergent evolution with the Australian bipedal hopping macropods. We dissect and measure the gastrocnemius, soleus, plantaris, and flexor digitorum longus in 10 adult springhares and compare them against similar-sized macropods using phylogenetically informed scaling analyses. We show that springhares align reasonably well with macropod predictions, being statistically indistinguishable with respect to the ankle extensor mean weighted muscle moment arm (1.63 vs. 1.65 cm, respectively), total muscle mass (41.1 vs. 29.2 g), total muscle physiological cross-sectional area (22.9 vs. 19.3 cm2 ), mean peak tendon stress (26.2 vs. 35.2 MPa), mean tendon safety factor (4.7 vs. 3.6), and total tendon strain energy return capacity (1.81 vs. 1.82 J). However, total tendon cross-sectional area is significantly larger in springhares than predicted for a similar-sized macropod (0.26 vs. 0.17 cm2 , respectively), primarily due to a greater plantaris tendon thickness (0.084 vs. 0.048 cm2 ), and secondarily because the soleus muscle-tendon unit is present in springhares but is vestigial in macropods. The overall similarities between springhares and macropods indicate that evolution has favored comparable lower hindlimb body plans for bipedal hopping locomotion in the two groups of mammals that last shared a common ancestor ~160 million years ago. The springhare's relatively thick plantaris tendon may facilitate rapid transfer of force from muscle to skeleton, enabling fast and accelerative hopping, which could help to outpace and outmaneuver predators.


Assuntos
Articulação do Tornozelo/anatomia & histologia , Tornozelo/anatomia & histologia , Evolução Biológica , Locomoção/fisiologia , Macropodidae/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Roedores/anatomia & histologia , Animais , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Austrália , Macropodidae/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Roedores/fisiologia , Tendões/fisiologia
13.
J Anat ; 236(3): 522-530, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31710396

RESUMO

Blood flow rate ( Q˙ ) in relation to arterial lumen radius (ri ) is commonly modelled according to theoretical equations and paradigms, including Murray's Law ( Q˙ ∝ ri3 ) and da Vinci's Rule ( Q˙ ∝ ri2 ). Wall shear stress (τ) is independent of ri with Murray's Law (τ âˆ  ri0 ) and decreases with da Vinci's Rule (τ âˆ  ri-1 ). These paradigms are tested empirically with a meta-analysis of the relationships between Q˙ and ri in seven major arteries of the human cephalic circulation from 19 imaging studies in which both variables were presented. The analysis shows that Q˙ ∝ ri2.16 and τ âˆ  ri-1.02 , more consistent with da Vinci's Rule than Murray's Law. This meta-analysis provides standard values for Q˙ , ri and τ in the human cephalic arteries that may be a useful baseline in future investigations. On average, the paired internal carotid arteries supply 75%, and the vertebral arteries supply 25%, of total brain blood flow. The internal carotid arteries contribute blood entirely to the anterior and middle cerebral arteries and also partly to the posterior cerebral arteries via the posterior communicating arteries of the circle of Willis. On average, the internal carotid arteries provide 88% of the blood flow to the cerebrum and the vertebral arteries only 12%.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Modelos Cardiovasculares , Fluxo Sanguíneo Regional/fisiologia , Hemodinâmica/fisiologia , Humanos , Estresse Mecânico
14.
Proc Biol Sci ; 286(1915): 20192208, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31718497

RESUMO

Brain metabolic rate (MR) is linked mainly to the cost of synaptic activity, so may be a better correlate of cognitive ability than brain size alone. Among primates, the sizes of arterial foramina in recent and fossil skulls can be used to evaluate brain blood flow rate, which is proportional to brain MR. We use this approach to calculate flow rate in the internal carotid arteries (Q˙ICA), which supply most of the primate cerebrum. Q˙ICA is up to two times higher in recent gorillas, chimpanzees and orangutans compared with 3-million-year-old australopithecine human relatives, which had equal or larger brains. The scaling relationships between Q˙ICA and brain volume (Vbr) show exponents of 1.03 across 44 species of living haplorhine primates and 1.41 across 12 species of fossil hominins. Thus, the evolutionary trajectory for brain perfusion is much steeper among ancestral hominins than would be predicted from living primates. Between 4.4-million-year-old Ardipithecus and Homo sapiens, Vbr increased 4.7-fold, but Q˙ICA increased 9.3-fold, indicating an approximate doubling of metabolic intensity of brain tissue. By contrast, Q˙ICA is proportional to Vbr among haplorhine primates, suggesting a constant volume-specific brain MR.


Assuntos
Circulação Cerebrovascular , Cérebro/irrigação sanguínea , Hominidae/fisiologia , Animais , Evolução Biológica , Fósseis , Especificidade da Espécie
15.
J Anat ; 235(1): 96-105, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30993709

RESUMO

Scaling of the heart across development can reveal the degree to which variation in cardiac morphology depends on body mass. In this study, we assessed the scaling of heart mass, left and right ventricular masses, and ventricular mass ratio, as a function of eviscerated body mass across fetal and postnatal development in Horro sheep Ovis aries (~50-fold body mass range; N = 21). Whole hearts were extracted from carcasses, cleaned, dissected into chambers and weighed. We found a biphasic relationship when heart mass was scaled against body mass, with a conspicuous 'breakpoint' around the time of birth, manifest not by a change in the scaling exponent (slope), but rather a jump in the elevation. Fetal heart mass (g) increased with eviscerated body mass (Mb , kg) according to the power equation 4.90 Mb0.88 ± 0.26 (± 95%CI) , whereas postnatal heart mass increased according to 10.0 Mb0.88 ± 0.10 . While the fetal and postnatal scaling exponents are identical (0.88) and reveal a clear dependence of heart mass on body mass, only the postnatal exponent is significantly less than 1.0, indicating the postnatal heart becomes a smaller component of body mass as the body grows, which is a pattern found frequently with postnatal cardiac development among mammals. The rapid doubling in heart mass around the time of birth is independent of any increase in body mass and is consistent with the normalization of wall stress in response to abrupt changes in volume loading and pressure loading at parturition. We discuss variation in scaling patterns of heart mass across development among mammals, and suggest that the variation results from a complex interplay between hard-wired genetics and epigenetic influences.


Assuntos
Coração , Ovinos , Animais , Tamanho Corporal , Desenvolvimento Fetal , Coração/anatomia & histologia , Coração/embriologia , Mamíferos/anatomia & histologia , Mamíferos/embriologia , Morfogênese , Ovinos/anatomia & histologia , Ovinos/embriologia
16.
J Exp Biol ; 222(Pt 7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30877224

RESUMO

This meta-study investigated the relationships between blood flow rate (Q̇; cm3 s-1), wall shear stress (τw; dyn cm-2) and lumen radius (ri; cm) in 20 named systemic arteries of nine species of mammals, ranging in mass from 23 g mice to 652 kg cows, at rest. In the dataset, derived from 50 studies, lumen radius varied between 3.7 µm in a cremaster artery of a rat and 11.2 mm in the aorta of a human. The 92 logged data points of [Formula: see text] and ri are described by a single second-order polynomial curve with the equation: [Formula: see text] The slope of the curve increased from approximately 2 in the largest arteries to approximately 3 in the smallest ones. Thus, da Vinci's rule ([Formula: see text]) applies to the main arteries and Murray's law ([Formula: see text]) applies to the microcirculation. A subset of the data, comprising only cephalic arteries in which [Formula: see text] is fairly constant, yielded the allometric power equation: [Formula: see text] These empirical equations allow calculation of resting perfusion rates from arterial lumen size alone, without reliance on theoretical models or assumptions on the scaling of wall shear stress in relation to body mass. As expected, [Formula: see text] of individual named arteries is strongly affected by body mass; however, [Formula: see text] of the common carotid artery from six species (mouse to horse) is also sensitive to differences in whole-body basal metabolic rate, independent of the effect of body mass.


Assuntos
Artérias/anatomia & histologia , Metabolismo Basal , Velocidade do Fluxo Sanguíneo/fisiologia , Mamíferos/anatomia & histologia , Animais , Artérias/fisiologia , Peso Corporal , Humanos , Mamíferos/fisiologia , Resistência ao Cisalhamento
18.
J Comp Physiol B ; 188(6): 991-1003, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30232543

RESUMO

Chemical immobilization is necessary for the physiological study of large wild animals. However, the immobilizing drugs can adversely affect the cardiovascular and respiratory systems, yielding data that do not accurately represent the normal, resting state. We hypothesize that these adverse effects can be ameliorated by reversing the immobilizing agent while holding the animal under general anaesthesia. We used habituated sheep Ovis aries (N = 5, 46.9 ± 5.3 kg body mass, mean ± SEM) and goats Capra hircus (N = 4, 27.7 ± 2.8 kg) as ungulate models for large wild animals, and measured their cardiorespiratory function under three conditions: (1) mild sedation (midazolam), as a proxy for the normal resting state, (2) immobilization (etorphine and azaperone), and (3) general anaesthesia (propofol) followed by etorphine antagonism (naltrexone). Cardiac output for both sheep and goats remained unchanged across the three conditions (overall means of 6.2 ± 0.9 and 3.3 ± 0.3 L min-1, respectively). For both sheep and goats, systemic and pulmonary mean arterial pressures were significantly altered from initial midazolam levels when administered etorphine + azaperone, but those arterial pressures were restored upon transition to propofol anaesthesia and antagonism of the etorphine. Under etorphine + azaperone, minute ventilation decreased in the sheep, though this decrease was corrected under propofol, while the minute ventilation in the goats remained unchanged throughout. Under etorphine + azaperone, both sheep and goats displayed arterial blood hypoxia and hypercapnia (relative to midazolam levels), which failed to completely recover under propofol, indicating that more time might be needed for the blood gases to be adequately restored. Nonetheless, many of the confounding cardiorespiratory effects of etorphine were ameliorated when it was antagonized with naltrexone while the animal was held under propofol, indicating that this procedure can largely restore the cardiovascular and respiratory systems closer to a normal, resting state.


Assuntos
Anestesia Geral , Cabras/fisiologia , Imobilização/fisiologia , Ovinos/fisiologia , Analgésicos Opioides , Anestésicos Intravenosos , Animais , Animais Selvagens , Azaperona , Etorfina , Hemodinâmica , Hipnóticos e Sedativos , Midazolam , Naltrexona , Antagonistas de Entorpecentes , Propofol , Respiração
19.
J Exp Biol ; 221(Pt 17)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29997157

RESUMO

The hearts of smaller mammals tend to operate at higher mass-specific mechanical work rates than those of larger mammals. The ultrastructural characteristics of the heart that allow for such variation in work rate are still largely unknown. We have used perfusion-fixation, transmission electron microscopy and stereology to assess the morphology and anatomical aerobic power density of the heart as a function of body mass across six species of wild African antelope differing by approximately 20-fold in body mass. The survival of wild antelope, as prey animals, depends on competent cardiovascular performance. We found that relative heart mass (g kg-1 body mass) decreases with body mass according to a power equation with an exponent of -0.12±0.07 (±95% confidence interval). Likewise, capillary length density (km cm-3 of cardiomyocyte), mitochondrial volume density (fraction of cardiomyocyte) and mitochondrial inner membrane surface density (m2 cm-3 of mitochondria) also decrease with body mass with exponents of -0.17±0.16, -0.06±0.05 and -0.07±0.05, respectively, trends likely to be associated with the greater mass-specific mechanical work rate of the heart in smaller antelope. Finally, we found proportionality between quantitative characteristics of a structure responsible for the delivery of oxygen (total capillary length) and those of a structure that ultimately uses that oxygen (total mitochondrial inner membrane surface area), which provides support for the economic principle of symmorphosis at the cellular level of the oxygen cascade in an aerobic organ.


Assuntos
Antílopes/anatomia & histologia , Coração/anatomia & histologia , Miocárdio/ultraestrutura , África , Animais , Antílopes/fisiologia , Peso Corporal , Coração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA