Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601855

RESUMO

Conservation areas encompassing elevation gradients are biodiversity hotspots because they contain a wide range of habitat types in a relatively small space. Studies of biodiversity patterns along elevation gradients, mostly on small mammal or bird species, have documented a peak in diversity at mid elevations. Here, we report on a field study of medium and large mammals to examine the impact of elevation, habitat type, and gross primary productivity on community structure. Species richness was observed using a camera trap transect with 219 sites situated across different habitat types from 2329 to 4657 m above the sea level on the western slope of Mt Kenya, the second highest mountain in Africa. We found that the lowest elevation natural habitats had the highest species richness and relative abundance and that both metrics decreased steadily as elevation increased, paralleling changes in gross primary productivity, and supporting the energy richness hypothesis. We found no evidence for the mid-domain effect on species diversity. The lowest elevation degraded Agro-Forestry lands adjacent to the National Park had high activity of domestic animals and reduced diversity and abundance of native species. The biggest difference in community structure was between protected and unprotected areas, followed by more subtle stepwise differences between habitats at different elevations. Large carnivore species remained relatively consistent but dominant herbivore species shifted along the elevation gradient. There was some habitat specialization and turnover in species, such that the elevation gradient predicts a high diversity of species, demonstrating the high conservation return for protecting mountain ecosystems for biodiversity conservation.

2.
Proc Biol Sci ; 283(1831)2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27194703

RESUMO

Parasites are ubiquitous components of the environment that contribute to behavioural and life-history variation among hosts. Although it is well known that host behaviour can affect parasite infection risk and that parasites can alter host behaviour, the potential for dynamic feedback between these processes is poorly characterized. Using Grant's gazelle (Nanger granti) as a model, we tested for reciprocal effects of behaviour on parasites and parasites on behaviour to understand whether behaviour-parasite feedback could play a role in maintaining variation in male reproductive behaviour. Adult male gazelles either defend territories to attract mates or reside in bachelor groups. Territoriality is highly variable both within- and between-individuals, suggesting that territory maintenance is costly. Using a combination of longitudinal and experimental studies, we found that individual males transition frequently between territorial and bachelor reproductive status, and that elevated parasite burdens are a cost of territoriality. Moreover, among territorial males, parasites suppress aspects of behaviour related to territory maintenance and defence. These results suggest that territorial behaviour promotes the accumulation of parasites in males, and these parasites dampen the very behaviours required for territory maintenance. Our findings suggest that reciprocal feedback between host behaviour and parasitism could be a mechanism maintaining variation in male reproductive behaviour in the system.


Assuntos
Antílopes/fisiologia , Antílopes/parasitologia , Comportamento Sexual Animal , Territorialidade , Animais , Fezes/parasitologia , Quênia , Estudos Longitudinais , Masculino , Estrongilídios/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA