Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 205(1): e0031522, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36541812

RESUMO

Fonticins are phage tail-like bacteriocins produced by the Gram-negative bacterium Pragia fontium from the family Budviciaceae. This bacterium produces contractile-type particles that adsorb on the surface of sensitive bacteria and penetrate the cell wall, probably during contraction, in a way similar to the type VI secretion system. We characterized the pore-forming activity of fonticins using both living cells and in vitro model membranes. Using a potassium leakage assay, we show that fonticins are able to permeabilize sensitive cells. On black lipid membranes, single-pore conductance is about 0.78 nS in 1 M NaCl and appears to be linearly dependent on the increasing molar strength of NaCl solution, which is a property of considerably large pores. In agreement with these findings, fonticins are not ion selective for Na+, K+, and Cl-. Polyethylene glycol 3350 (PEG 3350) molecules of about 3.5 nm in diameter can enter the fonticin pore lumen, whereas the larger molecules cannot pass the pore. The size of fonticin pores was confirmed by transmission electron microscopy. The terminal membrane-piercing complex of the fonticin tube probably creates a selective barrier restricting passage of macromolecules. IMPORTANCE Phage tail-like bacteriocins are now the subject of research as potent antibacterial agents due to their narrow host specificity and single-hit mode of action. In this work, we focused on the structure and mode of action of fonticins. According to some theories, related particles were initially adapted for passage of double-stranded DNA (dsDNA) molecules, but fonticins changed their function during the evolution; they are able to form large pores through the bacterial envelope of Gram-negative bacteria. As various pore-forming proteins are extensively used for nanopore sequencing and stochastic sensing, we decided to investigate the pore-forming properties of fonticin protein complexes on artificial lipid membranes. Our research revealed remarkable structural properties of these particles that may have a potential application as a nanodevice.


Assuntos
Bacteriocinas , Bicamadas Lipídicas , Bicamadas Lipídicas/metabolismo , Cloreto de Sódio/metabolismo , Membrana Celular/metabolismo , Bacteriocinas/metabolismo , Enterobacteriaceae
2.
Environ Microbiol ; 24(3): 1294-1307, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34735036

RESUMO

Interactions within bacterial communities are frequently mediated by the production of antimicrobial agents. Despite the increasing interest in research of new antimicrobials, studies describing antagonistic interactions among cold-adapted microorganisms are still rare. Our study assessed the antimicrobial interactions of 36 Antarctic Pseudomonas spp. and described the genetic background of these interactions in selected strains. The overall bacteriocinogeny was greater compared to mesophilic Pseudomonas non-aeruginosa species. R-type tailocins were detected on transmission electron micrographs in 16 strains (44.4%); phylogenetic analysis of the corresponding gene clusters revealed that the P. prosekii CCM 8878 tailocin was related to the Rp3 group, whereas the tailocin in Pseudomonas sp. CCM 8880 to the Rp4 group. Soluble antimicrobials were produced by eight strains (22.-2%); gene mining found pyocin L homologues in the genomes of P. prosekii CCM 8881 and CCM 8879 and pyocin S9-like homologues in P. prosekii CCM 8881 and Pseudomonas sp. CCM 8880. Analysis of secretomes confirmed the production of all S- and L-type pyocin genes. Our results suggest that bacteriocin-based inhibition plays an important role in interactions among Antarctic soil bacteria, and these native, cold-adapted microorganisms could be a promising source of new antimicrobials.


Assuntos
Bacteriocinas , Piocinas , Regiões Antárticas , Bacteriocinas/genética , Filogenia , Pseudomonas , Pseudomonas aeruginosa/genética
3.
Int J Med Microbiol ; 310(8): 151454, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33068882

RESUMO

Urinary tract infections represent common nosocomial infectious diseases. Bacteriocin production has been recently described as a putative virulence factor in these infections but studies focusing particularly on Pseudomonas aeruginosa are not available. Therefore, we assessed the prevalence of the bacteriocin genes, their co-occurrence and their co-association with previously detected virulence factors in a set of 135 P. aeruginosa strains from catheter-associated urinary tract infections (CAUTIs). The overall bacteriocinogeny reached 96.3 % with an average of 3.6 genes per strain. The most frequently detected determinants were the encoded pyocins S4 (76.3 %), R (69.6 %), and S2 (67.4 %). A statistically significant co-occurrence and a negative relationship were observed between several pyocin types. Particular pyocins exhibited associations with biofilm formation, production of pyochelin, pyocyanin, antibiotic-degrading enzymes, overall strain susceptibility and resistance, and motility of the strain. Co-occurrence of the pyocins S2 and S4 (p<<0.0001; Z = 13.15), both utilizating the ferripyoverdine receptor FpvAI, was found but no relation to pyoverdine production was detected. A negative association (p = 0.0047; Z=-2.83) was observed between pyochelin and pyocin S5 utilising the ferripyochelin receptor FptA. Pairwise assays resulted in 52.1 % inhibition which was equally distributed between soluble and particle types of antimicrobials. In conclusion, pyocin determinants appear to be important characteristics of CAUTI-related P. aeruginosa isolates and could contribute to their urovirulence.


Assuntos
Bacteriocinas/genética , Catéteres/microbiologia , Pseudomonas aeruginosa , Infecções Urinárias/microbiologia , Fatores de Virulência/genética , Humanos , Prevalência , Pseudomonas aeruginosa/genética
4.
Arch Microbiol ; 202(3): 447-454, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31691844

RESUMO

Pseudomonas prosekii is a recently described species isolated exclusively from James Ross Island close to the Antarctic Peninsula at 64° south latitude. Here, we present two P. prosekii genome sequences and their analyses with respect to phylogeny, low temperature adaptation, and potential biotechnological applications. The genome of P. prosekii P2406 comprised 5,896,482 bp and 5324 genes (GC content of 59.71%); the genome of P. prosekii P2673 consisted of 6,087,670 bp and 5511 genes (GC content of 59.50%). Whole genome sequence comparisons confirmed a close relationship between both investigated strains and strain P. prosekii LMG 26867T. Gene mining revealed the presence of genes involved in stress response, genes encoding cold shock proteins, oxidative stress proteins, osmoregulation proteins, genes for the synthesis of protection molecules, and siderophores. Comparative genome analysis of P. prosekii and P. aeruginosa PAO1 highlighted differences in genome content between extremophile species and a mesophilic opportunistic pathogen.


Assuntos
Genoma Bacteriano , Pseudomonas/fisiologia , Aclimatação , Adaptação Fisiológica , Altitude , Regiões Antárticas , Proteínas de Bactérias/genética , Composição de Bases , Sequência de Bases , Mapeamento Cromossômico , Filogenia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Sequenciamento Completo do Genoma
5.
Evol Bioinform Online ; 13: 1176934317700863, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469381

RESUMO

Pragia fontium is one of the few species that belongs to the group of atypical hydrogen sulfide-producing enterobacteria. Unlike other members of this closely related group, P. fontium is not associated with any known host and has been reported as a free-living bacterium. Whole genome sequencing and metabolic fingerprinting confirmed the phylogenetic position of P. fontium inside the group of atypical H2S producers. Genomic data have revealed that P. fontium 24613 has limited pathogenic potential, although there are signs of genome decay. Although the lack of specific virulence factors and no association with a host species suggest a free-living style, the signs of genome decay suggest a process of adaptation to an as-yet-unknown host.

6.
Curr Microbiol ; 73(1): 84-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27032403

RESUMO

During the microbiological research performed within the scope of activities of Czech expeditions based at the Johann Gregor Mendel Station at James Ross Island, Antarctica, two psychrotrophic gram-stain negative non-fluorescent strains CCM 8506T and CCM 8507 from soil were extensively characterized using genotypic and phenotypic methods. Initial characterization using ribotyping with HindIII restriction endonuclease and phenotyping implies that both isolates belong to a single Pseudomonas species. Sequencing of rrs, rpoB, rpoD and glnA genes of strain CCM 8506(T) confirmed affiliation of investigated strains within the genus Pseudomonas. Further investigation using automated ribotyping with EcoRI (RiboPrinter(®) Microbial Characterisation System), whole-cell protein profiling using the Agilent 2100 Bioanalyzer system, extensive biochemical testing and DNA-DNA hybridization experiments confirmed that both investigated strains are members of a single taxon which is clearly separated from all hitherto described Pseudomonas spp. Based on all findings, we describe a novel species Pseudomonas gregormendelii sp. nov. with the type strain CCM 8506(T) (=LMG 28632T).


Assuntos
Pseudomonas/isolamento & purificação , Microbiologia do Solo , Regiões Antárticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética
7.
Genome Announc ; 3(4)2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26159528

RESUMO

The complete genome sequence of Pragia fontium 24613 was determined using PacBio RSII, Roche 454, and SOLiD sequencing. A total of 3,579 genes were predicted, including 3,338 protein-coding sequences and 146 pseudogenes. This is the first whole-genome sequence of a strain belonging to the environmental genera of the family Enterobacteriaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA