Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Chem Commun (Camb) ; 60(45): 5790-5803, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756076

RESUMO

Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.


Assuntos
Proteínas , Proteínas/química , Porosidade , Cristalização , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Nanoestruturas/química
2.
bioRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38659833

RESUMO

Defining the binding epitopes of antibodies is essential for understanding how they bind to their antigens and perform their molecular functions. However, while determining linear epitopes of monoclonal antibodies can be accomplished utilizing well-established empirical procedures, these approaches are generally labor- and time-intensive and costly. To take advantage of the recent advances in protein structure prediction algorithms available to the scientific community, we developed a calculation pipeline based on the localColabFold implementation of AlphaFold2 that can predict linear antibody epitopes by predicting the structure of the complex between antibody heavy and light chains and target peptide sequences derived from antigens. We found that this AlphaFold2 pipeline, which we call PAbFold, was able to accurately flag known epitope sequences for several well-known antibody targets (HA / Myc) when the target sequence was broken into small overlapping linear peptides and antibody complementarity determining regions (CDRs) were grafted onto several different antibody framework regions in the single-chain antibody fragment (scFv) format. To determine if this pipeline was able to identify the epitope of a novel antibody with no structural information publicly available, we determined the epitope of a novel anti-SARS-CoV-2 nucleocapsid targeted antibody using our method and then experimentally validated our computational results using peptide competition ELISA assays. These results indicate that the AlphaFold2-based PAbFold pipeline we developed is capable of accurately identifying linear antibody epitopes in a short time using just antibody and target protein sequences. This emergent capability of the method is sensitive to methodological details such as peptide length, AlphaFold2 neural network versions, and multiple-sequence alignment database. PAbFold is available at https://github.com/jbderoo/PAbFold.

3.
ACS Chem Biol ; 19(2): 289-299, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38295274

RESUMO

Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Šof the enzyme active site. This mutation places a second H residue within 5 Šof an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.


Assuntos
Metaloides , Nanopartículas , Selênio , Oxirredutases/genética , Selênio/química , Cistina
4.
ACS Nano ; 17(14): 13110-13120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37407546

RESUMO

High-precision nanomaterials to entrap DNA-binding molecules are sought after for applications such as controlled drug delivery and scaffold-assisted structural biology. Here, we engineered protein-DNA cocrystals to serve as scaffolds for DNA-binding molecules. The designed cocrystals, isoreticular cocrystals, contain DNA-binding protein and cognate DNA blocks where the DNA-DNA junctions stack end-to-end. Furthermore, the crystal symmetry allows topology preserving (isoreticular) expansion of the DNA stack without breaking protein-protein contacts, hence providing larger solvent channels for guest diffusion. Experimentally, the resulting designed isoreticular cocrystal adopted an interpenetrating I222 lattice, a phenomenon previously observed in metal-organic frameworks (MOFs). The interpenetrating lattice crystallized dependably in the same space group despite myriad modifications at the DNA-DNA junctions. Assembly was modular with respect to the DNA inserted for expansion, providing an interchangeable DNA sequence for guest-specified scaffolding. Also, the DNA-DNA junctions were tunable, accommodating varied sticky base overhang lengths and terminal phosphorylation. As a proof of concept, we used the interpenetrating scaffold crystals to separately entrap three distinct guest molecules during crystallization. Isoreticular cocrystal design offers a route to a programmable scaffold for DNA-binding molecules, and the design principles may be applied to existing cocrystals to develop scaffolding materials.


Assuntos
DNA , Cristalização , Sequência de Bases
5.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36768872

RESUMO

Synthetic DNA barcodes are double-stranded DNA molecules designed to carry recoverable information, information that can be used to represent and track objects and organisms. DNA barcodes offer robust, sensitive detection using standard amplification and sequencing techniques. While numerous research groups have promoted DNA as an information storage medium, less attention has been devoted to the design of economical, scalable DNA barcode libraries. Here, we present an alternative modular approach to sequence design. Barcode sequences were constructed from smaller, interchangeable blocks, allowing for the combinatorial assembly of numerous distinct tags. We demonstrated the design and construction of first-generation (N = 256) and second-generation (N = 512) modular barcode libraries, from fewer than 50 total single-stranded oligonucleotides for each library. To avoid contamination during experimental validation, a liquid-handling robot was employed for oligonucleotide mixing. Generating barcode sequences in-house reduces dependency upon external entities for unique tag generation, increasing flexibility in barcode generation and deployment. Next generation sequencing (NGS) detection of 256 different samples in parallel highlights the multiplexing afforded by the modular barcode design coupled with high-throughput sequencing. Deletion variant analysis of the first-generation library informed sequence design for enhancing barcode assembly specificity in the second-generation library.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Código de Barras de DNA Taxonômico/métodos , Análise de Sequência de DNA/métodos , DNA/genética , DNA/análise , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oligonucleotídeos/genética
6.
Mater Today Nano ; 242023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38370345

RESUMO

Protein crystals with sufficiently large solvent pores can non-covalently adsorb polymers in the pores. In principle, if these polymers contain cell adhesion ligands, the polymer-laden crystals could present ligands to cells with tunable adhesion strength. Moreover, porous protein crystals can store an internal ligand reservoir, so that the surface can be replenished. In this study, we demonstrate that poly(ethylene glycol) terminated with a cyclic cell adhesion ligand peptide (PEG-RGD) can be loaded into porous protein crystals by diffusion. Through atomic force microscopy (AFM), force-distance correlations of the mechanical interactions between activated AFM tips and protein crystals were precisely measured. The activation of AFM tips allows the tips to interact with PEG-RGD that was pre-loaded in the protein crystal nanopores, mimicking how a cell might attach to and pull on the ligand through integrin receptors. The AFM experiments also simultaneously reveal the detailed morphology of the buffer-immersed nanoporous protein crystal surface. We also show that porous protein crystals (without and with loaded PEG-RGD) serve as suitable substrates for attachment and spreading of adipose-derived stem cells. This strategy can be used to design surfaces that non-covalently present multiple different ligands to cells with tunable adhesive strength for each ligand, and with an internal reservoir to replenish the precisely defined crystalline surface.

7.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743042

RESUMO

The clinical use of anticancer drugs necessitates new technologies for their safe, sensitive, and selective detection. In this article, lanthanide (Eu3+ and Tb3+)-loaded γ-cyclodextrin nano-aggregates (ECA and TCA) are reported, which sensitively detects the anticancer drug irinotecan by fluorescence intensity changes. Fluorescent lanthanide (Eu3+ and Tb3+) complexes exhibit high fluorescence intensity, narrow and distinct emission bands, long fluorescence lifetime, and insensitivity to photobleaching. However, these lanthanide (Eu3+ and Tb3+) complexes are essentially hydrophobic, toxic, and non-biocompatible. Lanthanide (Eu3+ and Tb3+) complexes were loaded into naturally hydrophilic γ-cyclodextrin to form fluorescent nano-aggregates. The biological nontoxicity and cytocompatibility of ECA and TCA fluorescent nanoparticles were demonstrated by cytotoxicity experiments. The ECA and TCA fluorescence nanosensors can detect irinotecan selectively and sensitively through the change of fluorescence intensity, with detection limits of 6.80 µM and 2.89 µM, respectively. ECA can safely detect irinotecan in the cellular environment, while TCA can detect irinotecan intracellularly and is suitable for cell labeling.


Assuntos
Antineoplásicos , Elementos da Série dos Lantanídeos , gama-Ciclodextrinas , Antineoplásicos/farmacologia , Irinotecano , Elementos da Série dos Lantanídeos/química
8.
J Mater Chem B ; 10(34): 6443-6452, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35703105

RESUMO

In this work, a designed porous DNA crystal with high intrinsic biocompatibility was used as the scaffold material to load fluorescent guest molecules to detect anti-cancer drugs. It is shown here that the synthesized crystals have the characteristics consistent with the designed large solvent channels, and can therefore accommodate guest molecules such as fluorescent proteins that cannot be accommodated by less porous crystals. Eu(TTA)3phen and Tb(acac)3phen lanthanide complexes were individually noncovalently loaded into the porous crystals, resulting in hybrid luminescent DNA crystals. Emodin, an anti-cancer, anti-tumor, anti-inflammatory drug, was found to quench lanthanide complexes in solution or in crystals. Notably, emodin is the active ingredient of Lianhua Qingwen Capsule, an anti-COVID-19 drug candidate. Therefore, the porous DNA crystals reported here have potential applications as a biocompatible and theranostic delivery biomaterial for functional macromolecules.


Assuntos
Emodina , Elementos da Série dos Lantanídeos , DNA , Elementos da Série dos Lantanídeos/química , Luminescência , Preparações Farmacêuticas
9.
PNAS Nexus ; 1(4): pgac190, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714845

RESUMO

Conventional mosquito marking technology for mark-release-recapture (MRR) is quite limited in terms of information capacity and efficacy. To overcome both challenges, we have engineered, lab-tested, and field-evaluated a new class of marker particles, in which synthetic, short DNA oligonucleotides (DNA barcodes) are adsorbed and protected within tough, crosslinked porous protein microcrystals. Mosquitoes self-mark through ingestion of microcrystals in their larval habitat. Barcoded microcrystals persist trans-stadially through mosquito development if ingested by larvae, do not significantly affect adult mosquito survivorship, and individual barcoded mosquitoes are detectable in pools of up to at least 20 mosquitoes. We have also demonstrated crystal persistence following adult mosquito ingestion. Barcode sequences can be recovered by qPCR and next-generation sequencing (NGS) without detectable amplification of native mosquito DNA. These DNA-laden protein microcrystals have the potential to radically increase the amount of information obtained from future MRR studies compared to previous studies employing conventional mosquito marking materials.

10.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578776

RESUMO

We designed and realized highly fluorescent nanostructures composed of Eu3+ complexes under a protein coating. The nanostructured material, confirmed by photo-induced force microscopy (PiFM), includes a bottom fluorescent layer and an upper protein layer. The bottom fluorescent layer includes Eu3+ that is coordinated by 1,10-phenanthroline (Phen) and oleic acid (O). The complete complexes (OEu3+Phen) formed higher-order structures with diameter 40-150 nm. Distinctive nanoscale striations reminiscent of fingerprints were observed with a high-resolution transmission electron microscope (HRTEM). Stable fluorescence was increased by the addition of Eu3+ coordinated by Phen and 2-thenoyltrifluoroacetone (TTA), and confirmed by fluorescence spectroscopy. A satisfactory result was the observation of red Eu3+ complex emission through a protein coating layer with a fluorescence microscope. Lanthanide nanostructures of these types might ultimately prove useful for biometric applications in the context of human and non-human tissues. The significant innovations of this work include: (1) the structural set-up of the fluorescence image embedded under protein "skin"; and (2) dual confirmations of nanotopography and unique nanofingerprints under PiFM and under TEM, respectively.

11.
Nanoscale ; 13(24): 10871-10881, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34124715

RESUMO

Crosslinked porous protein crystals are a new biomaterial that can be engineered to encapsulate, stabilize, and organize guest molecules, nanoparticles, and biological moieties. In this study, for the first time, the combined interactions of DNA strands with porous protein crystals are quantitatively measured by high-resolution atomic force microscopy (AFM) and chemical force microscopy. The surface structure of protein crystals with unusually large pores was observed in liquid via high-resolution AFM. Force-distance (F-D) curves were also obtained using AFM tips modified to present or capture DNA. The modification of AFM tips allowed the tips to covalently bind DNA that was pre-loaded in the protein crystal nanopores. The modified tips enabled the interactions of DNA molecules with protein crystals to be quantitatively studied while revealing the morphology of the buffer-immersed protein crystal surface in detail, thereby preserving the structure and properties of protein crystals that could be disrupted or destroyed by drying. The hexagonal space group was manifest at the crystal surface, as were the strong interactions between DNA and the porous protein crystals in question. In sum, this study furthered our understanding of how a new protein-based biomaterial can be used to bind guest DNA assemblies.


Assuntos
Nanoporos , DNA , Microscopia de Força Atômica , Proteínas
12.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570569

RESUMO

Histone posttranslational modifications (PTMs) are dynamic, context-dependent signals that modulate chromatin structure and function. Ubiquitin (Ub) conjugation to different lysines of histones H2A and H2B is used to regulate diverse processes such as gene silencing, transcriptional elongation, and DNA repair. Despite considerable progress made to elucidate the players and mechanisms involved in histone ubiquitination, there remains a lack of tools to monitor these PTMs, especially in live cells. To address this, we combined an avidity-based strategy with in silico approaches to design sensors for specifically ubiquitinated nucleosomes. By linking Ub-binding domains to nucleosome-binding peptides, we engineered proteins that target H2AK13/15Ub and H2BK120Ub with Kd values from 10-8 to 10-6 M; when fused to fluorescent proteins, they work as PTM sensors in cells. The H2AK13/15Ub-specific sensor, employed to monitor signaling from endogenous DNA damage through the cell cycle, identified and differentiated roles for 53BP1 and BARD1 as mediators of this histone PTM.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Linhagem Celular , Histonas/genética , Humanos , Nucleossomos/genética , Proteínas Supressoras de Tumor/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
13.
Curr Opin Struct Biol ; 60: 85-92, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896427

RESUMO

Molecular scaffolds provide routes to otherwise inaccessible organized states of matter. Scaffolds that are crystalline can be observed in atomic detail using diffraction, along with any guest molecules that have adopted coherent structures therein. This approach, scaffold-assisted structure determination, is not yet routine. However, with varying degrees of guest immobilization, porous crystal scaffolds have recently been decorated with guest molecules. Herein we analyze recent milestones, compare the relative advantages and challenges of different types of scaffold crystals, and weigh the merits of diverse guest installation strategies.


Assuntos
Biologia/métodos , Porosidade
14.
Appl Microbiol Biotechnol ; 103(10): 4177-4192, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30968165

RESUMO

Quantifying functional biomarker genes and their transcripts provides critical lines of evidence for contaminant biodegradation; however, accurate quantification depends on qPCR primers that contain no, or minimal, mismatches with the target gene. Developing accurate assays has been particularly challenging for genes encoding fumarate-adding enzymes (FAE) due to the high level of genetic diversity in this gene family. In this study, metagenomics applied to a field-derived, o-xylene-degrading methanogenic consortium revealed genes encoding FAE that would not be accurately quantifiable by any previously available PCR assays. Sequencing indicated that a gene similar to the napthylmethylsuccinate synthase gene (nmsA) was most abundant, although benzylsuccinate synthase genes (bssA) also were present along with genes encoding alkylsuccinate synthase (assA). Upregulation of the nmsA-like gene was observed during o-xylene degradation. Protein homology modeling indicated that mutations in the active site, relative to a BssA that acts on toluene, increase binding site volume and accessibility, potentially to accommodate the relatively larger o-xylene. The new nmsA-like gene was also detected at substantial concentrations at field sites with a history of xylene contamination.


Assuntos
Biotransformação , Enzimas/genética , Marcadores Genéticos , Consórcios Microbianos/genética , Xilenos/metabolismo , Anaerobiose , Metagenômica
15.
Biomater Sci ; 7(5): 1898-1904, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30758353

RESUMO

Porous protein crystals provide a template for binding and organizing guest macromolecules. Peroxidase, oxidase, and reductase enzymes immobilized in protein crystals retained activity in single-crystal and bulk assay formats. Several binding strategies, including metal affinity and physical entrapment, were employed to encourage enzyme adsorption into the protein crystals and to retain the enzymes for multiple recycles. Immobilized enzymes had lower activity compared to free enzyme in solution, in part due to diffusion limitations of substrate within the crystal pores. However, the immobilized enzymes were long-term stable and showed increased thermal tolerance. The potential applications of enzyme-laden crystals as sensing devices, delivery capsules, and microreactors motivate future development of this technology.


Assuntos
Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Aspergillus niger/enzimologia , Campylobacter jejuni , Difusão , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Porosidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-30488657

RESUMO

The porosity, order, biocompatibility, and chirality of protein crystals has motivated interest from diverse research domains including materials science, biotechnology, and medicine. Porous protein crystals have the unusual potential to organize guest molecules within highly ordered scaffolds, enabling applications ranging from biotemplating and catalysis to biosensing and drug delivery. Significant research has therefore been directed toward characterizing protein crystal materials in hopes of optimizing crystallization, scaffold stability, and application efficacy. In this overview article, we describe recent progress in the field of protein crystal materials with special attention given to applications in nanomedicine and nanobiotechnology. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.


Assuntos
Biotecnologia , Cristalização , Nanomedicina , Nanoestruturas , Proteínas , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos , Enzimas/química , Enzimas/metabolismo , Humanos , Camundongos , Porosidade , Proteínas/química , Proteínas/metabolismo , Ratos
17.
ACS Biomater Sci Eng ; 4(3): 826-831, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418767

RESUMO

With rapidly growing interest in therapeutic macromolecules, targeted drug delivery, and in vivo biosensing comes the need for new nanostructured biomaterials capable of macromolecule storage and metered release that exhibit robust stability and cytocompatibility. One novel possibility for such a material are engineered large-pore protein crystals (LPCs). Here, various chemically stabilized LPC derived biomaterials were generated using three cross-linking agents: glutaraldehyde, oxaldehyde, and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. LPC biostability and in vitro mammalian cytocompatibility was subsequently evaluated and compared to similarly cross-linked tetragonal hen egg white lysozyme crystals. This study demonstrates the ability of various cross-linking chemistries to physically stabilize the molecular structure of LPC materials-increasing their tolerance to challenging conditions while exhibiting minimal cytotoxicity. This approach produces LPC-derived biomaterials with promising utility for diverse applications in biotechnology and nanomedicine.

18.
Bioconjug Chem ; 29(1): 17-22, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29232505

RESUMO

Protein crystals are porous self-assembling materials that can be rapidly evolved by mutagenesis. We aimed to develop scaffold assisted crystallography techniques in an engineered protein crystal with large pores (>13 nm). Guest molecules were installed via a single covalent bond to attempt to reduce the conformational freedom and achieve high-occupancy structures. We used four different conjugation strategies to attach guest molecules to three different cysteine sites within pre-existing protein crystals. In all but one case, the presence of the adduct was obvious in the electron density. Structure determination of larger guest molecules may be feasible due to the large pores of the engineered scaffold crystals.


Assuntos
Proteínas de Bactérias/química , Materiais Biocompatíveis/química , Campylobacter jejuni/química , Bibliotecas de Moléculas Pequenas/química , Cristalização , Modelos Moleculares , Porosidade
19.
J Phys Chem B ; 121(32): 7652-7659, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714685

RESUMO

Large-pore protein crystals (LPCs) are ordered biologically derived nanoporous materials exhibiting pore diameters greater than 8 nm. These substantial pores distinguish LPCs from typical nanoporous scaffolds, enabling engineered LPC materials to readily uptake, immobilize, and release macromolecular guests. In this study, macromolecular transport within an LPC environment was experimentally and computationally investigated by studying adsorption-coupled diffusion of Au25(glutathione)18 nanoclusters within a cross-linked LPC scaffold via time-lapse confocal microscopy, bulk equilibrium adsorption, and hindered diffusion simulation. Equilibrium adsorption data is congruent with a Langmuir adsorption model, exhibiting strong binding behavior between nanoclusters and the scaffold. The standard Gibbs free energy of binding is equivalent to -37.2 kJ/mol, and the maximum binding capacity of 1.25 × 103 mg/g corresponds to approximately 29 nanoclusters per LPC unit cell. The hindered diffusion model showed good agreement with experimental data, revealing a pore diffusion coefficient of 3.7 × 10-7 cm2/s under low nanocluster concentration. Furthermore, the model was sufficient to determine adsorption and desorption kinetic values for ka and kd equal to 13 cm3/mol·s and 1.7 × 10-7 s-1, respectively. At higher nanocluster concentrations, the simulated pore diffusion coefficient could be reduced by 3 orders of magnitude to 3.4 × 10-10 cm2/s due to the effects of pore occlusion. This study demonstrates a strategy to analyze adsorption-coupled diffusion data to better understand complex transport of fluorescent macromolecules into LPCs. This approach fits the observable fluorescence data to the key molecular details and will benefit downstream efforts to engineer LPC-based nanoporous materials.


Assuntos
Proteínas de Bactérias/química , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Difusão , Cinética , Microscopia Confocal , Porosidade , Termodinâmica , Imagem com Lapso de Tempo
20.
J Biomol Struct Dyn ; 35(9): 1990-2002, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27320477

RESUMO

Pretreating biomass using ionic liquids (ILs) can decrease cellulose crystallinity and lead to improved hydrolysis. However, cellulase activity is often reduced in even low concentrations of ILs, necessitating complete washing between pretreatment and hydrolysis steps. To better understand how ILs interact with enzymes at the molecular scale, endoglucanase E1 from Acidothermus cellulolyticus was simulated in aqueous 1-ethyl-3-methylimidazolium chloride ([Emim]Cl). Homologs with differing surface charge were also simulated to assess the role of electrostatic interactions between the enzyme and the surrounding solvent. Chloride anions interacted with the enzyme surface via Coulomb or hydrogen bond interactions, while [Emim] cations primarily formed hydrophobic or ring stacking interactions. Cations strongly associated with the binding pocket of E1, potentially inhibiting the binding of substrate molecules. At elevated temperatures, cations also disrupted native hydrophobic contacts and caused some loss of secondary structure. These observations suggested that both cations and anions could influence enzyme behavior and that denaturing and inhibitory interactions might both be important in aqueous IL systems.


Assuntos
Celulase/química , Imidazóis/química , Líquidos Iônicos/química , Solventes/química , Actinobacteria/enzimologia , Ânions/química , Celulose/química , Celulose/metabolismo , Cloretos/química , Ligação de Hidrogênio , Hidrólise , Simulação de Dinâmica Molecular , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA