Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6685): 818-822, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386735

RESUMO

Moving instruction "beyond Mendel" can counter inaccurate, essentialist views.


Assuntos
Genômica , Genética Humana , Racismo , Genômica/educação , Racismo/prevenção & controle , Genética Humana/educação
2.
Elife ; 82019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30994454

RESUMO

How huntingtin (HTT) triggers neurotoxicity in Huntington's disease (HD) remains unclear. We report that HTT forms a transcription-coupled DNA repair (TCR) complex with RNA polymerase II subunit A (POLR2A), ataxin-3, the DNA repair enzyme polynucleotide-kinase-3'-phosphatase (PNKP), and cyclic AMP-response element-binding (CREB) protein (CBP). This complex senses and facilitates DNA damage repair during transcriptional elongation, but its functional integrity is impaired by mutant HTT. Abrogated PNKP activity results in persistent DNA break accumulation, preferentially in actively transcribed genes, and aberrant activation of DNA damage-response ataxia telangiectasia-mutated (ATM) signaling in HD transgenic mouse and cell models. A concomitant decrease in Ataxin-3 activity facilitates CBP ubiquitination and degradation, adversely impacting transcription and DNA repair. Increasing PNKP activity in mutant cells improves genome integrity and cell survival. These findings suggest a potential molecular mechanism of how mutant HTT activates DNA damage-response pro-degenerative pathways and impairs transcription, triggering neurotoxicity and functional decline in HD.


Assuntos
Ataxina-3/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteína Huntingtina/metabolismo , Proteínas Mutantes/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Proteína Huntingtina/genética , Camundongos Transgênicos , Proteínas Mutantes/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Sialoglicoproteínas/metabolismo
3.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30135120

RESUMO

Spanins are bacteriophage lysis proteins responsible for disruption of the outer membrane, the final step of Gram-negative host lysis. The absence of spanins results in a terminal phenotype of fragile spherical cells. The phage T1 employs a unimolecular spanin gp11 that has an N-terminal lipoylation signal and a C-terminal transmembrane domain. Upon maturation and localization, gp11 ends up as an outer membrane lipoprotein with a C-terminal transmembrane domain embedded in the inner membrane, thus connecting both membranes as a covalent polypeptide chain. Unlike the two-component spanins encoded by most of the other phages, including lambda, the unimolecular spanins have not been studied extensively. In this work, we show that the gp11 mutants lacking either membrane localization signal were nonfunctional and conferred a partially dominant phenotype. Translation from internal start sites within the gp11 coding sequence generated a shorter product which exhibited a negative regulatory effect on gp11 function. Fluorescence spectroscopy time-lapse videos of gp11-GFP expression showed gp11 accumulated in distinct punctate foci, suggesting localized clusters assembled within the peptidoglycan meshwork. In addition, gp11 was shown to mediate lysis in the absence of holin and endolysin function when peptidoglycan density was depleted by starvation for murein precursors. This result indicates that the peptidoglycan is a negative regulator of gp11 function. This supports a model in which gp11 acts by fusing the inner and outer membranes, a mode of action analogous to but mechanistically distinct from that proposed for the two-component spanin systems.IMPORTANCE Spanins have been proposed to fuse the cytoplasmic and outer membranes during phage lysis. Recent work with the lambda spanins Rz-Rz1, which are similar to class I viral fusion proteins, has shed light on the functional domains and requirements for two-component spanin function. Here we report, for the first time, a genetic and biochemical approach to characterize unimolecular spanins, which are structurally and mechanistically different from two-component spanins. Considering similar predicted secondary structures within the ectodomains, unimolecular spanins can be regarded as a prokaryotic version of type II viral membrane fusion proteins. This study not only adds to our understanding of regulation of phage lysis at various levels but also provides a prokaryotic genetically tractable platform for interrogating class II-like membrane fusion proteins.


Assuntos
Bacteriólise/genética , Endopeptidases/genética , Siphoviridae/genética , Proteínas Virais/genética , Escherichia coli/virologia , Fusão de Membrana/fisiologia , Proteínas de Membrana/genética , Estrutura Secundária de Proteína
4.
Genome Announc ; 3(5)2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472844

RESUMO

Citrobacter freundii is a Gram-negative opportunistic pathogen that is associated with urinary tract infections. Bacteriophages infecting C. freundii can be used as an effective treatment to fight these infections. Here, we announce the complete genome sequence of the C. freundii Felix O1-like myophage Mordin and describe its features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA