Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0271145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477212

RESUMO

Chronic hepatitis B (CHB) is a global health care challenge and a major cause of liver disease. To find new therapeutic avenues with a potential to functionally cure chronic Hepatitis B virus (HBV) infection, we performed a focused screen of epigenetic modifiers to identify potential inhibitors of replication or gene expression. From this work we identified isonicotinic acid inhibitors of the histone lysine demethylase 5 (KDM5) with potent anti-HBV activity. To enhance the cellular permeability and liver accumulation of the most potent KDM5 inhibitor identified (GS-080) an ester prodrug was developed (GS-5801) that resulted in improved bioavailability and liver exposure as well as an increased H3K4me3:H3 ratio on chromatin. GS-5801 treatment of HBV-infected primary human hepatocytes reduced the levels of HBV RNA, DNA and antigen. Evaluation of GS-5801 antiviral activity in a humanized mouse model of HBV infection, however, did not result in antiviral efficacy, despite achieving pharmacodynamic levels of H3K4me3:H3 predicted to be efficacious from the in vitro model. Here we discuss potential reasons for the disconnect between in vitro and in vivo efficacy, which highlight the translational difficulties of epigenetic targets for viral diseases.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Animais , Camundongos , Antivirais/farmacologia , Hepatite B Crônica/tratamento farmacológico , Epigenômica
2.
PLoS One ; 15(10): e0241238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33104749

RESUMO

The NCoR corepressor plays critical roles in mediating transcriptional repression by both nuclear receptors and non-receptor transcription factors. Alternative mRNA splicing of NCoR produces a series of variants with differing molecular and biological properties. The NCoRω splice-variant inhibits adipogenesis whereas the NCoRδ splice-variant promotes it, and mice bearing a splice-specific knockout of NCoRω display enhanced hepatic steatosis and overall weight gain on a high fat diet as well as a greatly increased resistance to diet-induced glucose intolerance. We report here that the reciprocal NCoRδ splice-specific knock-out mice display the contrary phenotypes of reduced hepatic steatosis and reduced weight gain relative to the NCoRω-/- mice. The NCoRδ-/- mice also fail to demonstrate the strong resistance to diet-induced glucose intolerance exhibited by the NCoRω-/- animals. The NCoR δ and ω variants possess both unique and shared transcriptional targets, with expression of certain hepatic genes affected in opposite directions in the two mutants, others altered in one but not the other genotype, and yet others changed in parallel in both NCoRδ-/- and NCoRω-/- animals versus WT. Gene set expression analysis (GSEA) identified a series of lipid, carbohydrate, and amino acid metabolic pathways that are likely to contribute to their distinct steatosis and glucose tolerance phenotypes. We conclude that alternative-splicing of the NCoR corepressor plays a key role in the regulation of hepatic energy storage and utilization, with the NCoRδ and NCoRω variants exerting both opposing and shared functions in many aspects of this phenomenon and in the organism as a whole.


Assuntos
Processamento Alternativo/genética , Fígado/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Animais , Dieta , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Comportamento Alimentar , Regulação da Expressão Gênica , Intolerância à Glucose/complicações , Resistência à Insulina , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Aumento de Peso
3.
Regul Toxicol Pharmacol ; 117: 104746, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32911461

RESUMO

Pharmaceutic products designed to perturb the function of epigenetic modulators have been approved by regulatory authorities for treatment of advanced cancer. While the predominant effort in epigenetic drug development continues to be in oncology, non-oncology indications are also garnering interest. A survey of pharmaceutical companies was conducted to assess the interest and concerns for developing small molecule direct epigenetic effectors (EEs) as medicines. Survey themes addressed (1) general levels of interest and activity with EEs as therapeutic agents, (2) potential safety concerns, and (3) possible future efforts to develop targeted strategies for nonclinical safety assessment of EEs. Thirteen companies contributed data to the survey. Overall, the survey data indicate the consensus opinion that existing ICH guidelines are effective and appropriate for nonclinical safety assessment activities with EEs. Attention in the framework of study design should, on a case by case basis, be considered for delayed or latent toxicities, carcinogenicity, reproductive toxicity, and the theoretical potential for transgenerational effects. While current guidelines have been appropriate for the nonclinical safety assessments of epigenetic targets, broader experience with a wide range of epigenetic targets will provide information to assess the potential need for new or revised risk assessment strategies for EE drugs.


Assuntos
Indústria Farmacêutica/normas , Controle de Medicamentos e Entorpecentes , Epigênese Genética/efeitos dos fármacos , Preparações Farmacêuticas/normas , Inquéritos e Questionários , Animais , Avaliação Pré-Clínica de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/tendências , Indústria Farmacêutica/tendências , Controle de Medicamentos e Entorpecentes/tendências , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Epigênese Genética/genética , Humanos , Preparações Farmacêuticas/administração & dosagem , Medição de Risco/normas , Medição de Risco/tendências
4.
Antiviral Res ; 169: 104538, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226346

RESUMO

We describe here the anti-HBV activity of natural and synthetic retinoids in primary human hepatocytes (PHHs). The most potent compounds inhibited HBsAg, HBeAg, viral RNA and DNA production by HBV infected cells with EC50 values ranging from 0.4 to 2.6 µM. The activity was independent of PHH donor and HBV genotype used in testing. 13-cis retinoic acid (Accutane) was selected for further evaluation in the PXB chimeric mouse model of HBV infection at doses allowing to achieve Accutane peak serum concentrations near its antiviral EC90 and exposures ∼5-fold higher than a typical clinical dose. While these supraclinical exposures of 100 mg/kg/day were well-tolerated by regular Balb/c mice, PXB mice were more sensitive and even a lower those of 60 mg/kg/day led to significant weight loss. Despite dosing at this maximal tolerated dose for 28 days, Accutane failed to show any anti-HBV activity. RAR target engagement was verified using transcriptome analysis of liver samples from treated versus vehicle groups. However, gene expression changes in PXB liver samples were vastly muted when compared to the in vitro PHH system. When comparing transcriptional changes associated with the conditioning of fresh hepatocytes toward enabling HBV infection, we also observed a large number of changes. Noticeably, a significant number of genes that were up- or down-regulated by the conditioning process were down- or up-regulated by HBV infected PHH treatment with Accutane, respectively. While the lack of efficacy in the PXB model may have many explanations, the observed, opposing transcriptional changes upon conditioning PHH and treating these cultured, HBV-infected PHH with Accutane allow for the possibility that the PHH system may yield artificial anti-HBV hits.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Hepatócitos/virologia , Retinoides/farmacologia , Animais , Antivirais/sangue , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica/efeitos dos fármacos , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/efeitos dos fármacos , Antígenos E da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatócitos/metabolismo , Humanos , Isotretinoína/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/metabolismo , Retinoides/sangue , Regulação para Cima , Replicação Viral/efeitos dos fármacos
5.
Toxicol In Vitro ; 50: 109-123, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29427706

RESUMO

Neurotoxicity is a major concern during drug development, and together with liver and cardio-toxicity, it is one of the main causes of clinical drug attrition. Current pre-clinical models may not sufficiently identify and predict the risk for central or peripheral nervous system toxicity. One such example is clinically dose-limiting neuropathic effects after the administration of chemotherapeutic agents. Thus, the need to establish novel in vitro tools to evaluate the risk of neurotoxicities, such as neuropathy, remains unmet in drug discovery. Though in vitro studies have been conducted using primary and immortalized cell lines, some limitations include the utility for higher throughput methodologies, method reproducibility, and species extrapolation. As a novel alternative, human induced-pluripotent stem cell (iPSC)-derived neurons appear promising for testing new drug candidates. These iPSC-derived neurons are readily available and can be manipulated as required. Here, we describe a novel approach to assess neurotoxicity caused by different classes of chemotherapeutics using kinetic monitoring of neurite dynamic changes and apoptosis in human iPSC-neurons. These studies show promising changes in neurite dynamics in response to clinical inducers of neuropathy, as well as the ability to rank-order and gather mechanistic insight into class-specific compound induced neurotoxicity. This platform can be utilized in early drug development, as part of a weight of evidence approach, to screen drug candidates, and potentially reduce clinical attrition due to neurotoxicity.


Assuntos
Antineoplásicos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Neuritos/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas
6.
BMC Evol Biol ; 16(1): 221, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756201

RESUMO

BACKGROUND: SMRT and NCoR are corepressor paralogs that help mediate transcriptional repression by a variety of transcription factors, including the nuclear hormone receptors. The functions of both corepressors are extensively diversified in mice by alternative mRNA splicing, generating a series of protein variants that differ in different tissues and that exert different, even diametrically opposite, biochemical and biological effects from one another. RESULTS: We report here that the alternative splicing previously reported for SMRT appears to be a relatively recent evolutionary phenomenon, with only one of these previously identified sites utilized in a teleost fish and a limited additional number of the additional known sites utilized in a bird, reptile, and marsupial. In contrast, extensive SMRT alternative splicing at these sites was detected among the placental mammals. The alternative splicing of NCoR previously identified in mice (and shown to regulate lipid and carbohydrate metabolism) is likely to have arisen separately and after that of SMRT, and includes an example of convergent evolution. CONCLUSIONS: We propose that the functions of both SMRT and NCoR have been diversified by alternative splicing during evolution to allow customization for different purposes in different tissues and different species.


Assuntos
Processamento Alternativo/genética , Proteínas Correpressoras/genética , Evolução Molecular , Animais , Proteínas Correpressoras/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Gambás/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos/genética , Especificidade da Espécie , Xenopus/genética , Peixe-Zebra/genética
7.
Mol Cell Endocrinol ; 413: 228-35, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26166430

RESUMO

Alternative mRNA splicing diversifies the products encoded by the NCoR and SMRT corepressor loci. There is a programmed alteration in NCoR mRNA splicing during adipocyte differentiation from an NCoRω isoform, which contains three nuclear receptor interaction domains, to an NCoRδ isoform that contains two nuclear receptor interaction domains. This alternative mRNA splicing of NCoR has profound effects on adiposity and on diabetes in mouse models. We report here that dexamethasone, a powerful regulator of metabolism and of adipocyte differentiation, confers this change in NCoR mRNA splicing in cultured adipocytes. We also demonstrate that changes in dietary components can consistently, if moderately, modulate the total transcript levels and the mRNA splicing of NCoR and SMRT in both cultured cells and intact mice. This ability of alternative corepressor mRNA splicing to respond to nutritional changes confirms its importance in regulating glucose and lipid metabolism, and its promise as a therapeutic candidate for metabolic disorders such as type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Processamento Alternativo/efeitos dos fármacos , Dexametasona/farmacologia , Glucose/farmacologia , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Processamento Alternativo/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/genética , RNA Mensageiro/genética , Transdução de Sinais/genética
8.
Mol Cell Biol ; 34(22): 4104-14, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25182530

RESUMO

Alternative mRNA splicing is an important means of diversifying function in higher eukaryotes. Notably, both NCoR and SMRT corepressors are subject to alternative mRNA splicing, yielding a series of distinct corepressor variants with highly divergent functions. Normal adipogenesis is associated with a switch in corepressor splicing from NCoRω to NCoRδ, which appears to help regulate this differentiation process. We report here that mimicking this development switch in mice by a splice-specific whole-animal ablation of NCoRω is very different from a whole-animal or tissue-specific total NCoR knockout and produces significantly enhanced weight gain on a high-fat diet. Surprisingly, NCoRω(-/-) mice are protected against diet-induced glucose intolerance despite enhanced adiposity and the presence of multiple additional, prodiabetic phenotypic changes. Our results indicate that the change in NCoR splicing during normal development both helps drive normal adipocyte differentiation and plays a key role in determining a metabolically appropriate storage of excess calories. We also conclude that whole-gene "knockouts" fail to reveal how important gene products are customized, tailored, and adapted through alternative mRNA splicing and thus do not reveal all the functions of the protein products of that gene.


Assuntos
Processamento Alternativo , Fígado Gorduroso/genética , Intolerância à Glucose/genética , Fígado/patologia , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/genética , Aumento de Peso , Adipogenia , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Deleção de Genes , Intolerância à Glucose/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
Mol Cell Biol ; 30(6): 1434-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20065040

RESUMO

Estrogen receptors (ERs) are hormone-regulated transcription factors that regulate key aspects of reproduction and development. ERs are unusual in that they do not typically repress transcription in the absence of hormone but instead possess otherwise cryptic repressive functions that are revealed upon binding to certain hormone antagonists. The roles of corepressors in the control of these aspects of ER function are complex and incompletely understood. We report here that ERs recruit SMRT through an unusual mode of interaction involving multiple contact surfaces. Two surfaces of SMRT, located at the N- and C-terminal domains, contribute to the recruitment of the corepressor to ERs in vitro and are crucial for the corepressor modulation of ER transcriptional activity in cells. These corepressor surfaces contact the DNA binding domain of the receptor, rather than the hormone binding domain previously elucidated for other corepressor/nuclear receptor interactions, and are modulated by the ER's recognition of cognate DNA binding sites. Several additional nuclear receptors, and at least one other corepressor, N-CoR, share aspects of this novel mode of corepressor recruitment. Our results highlight a molecular mechanism that helps explain several previously paradoxical aspects of ER-mediated transcriptional antagonism, which may have a broader significance for an understanding of target gene repression by other nuclear receptors.


Assuntos
DNA/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/química , Correpressor 2 de Receptor Nuclear/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Estradiol/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Humanos , Ligantes , Dados de Sequência Molecular , PPAR alfa/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Elementos de Resposta/genética , Transcrição Gênica/efeitos dos fármacos
10.
Arch Insect Biochem Physiol ; 70(4): 217-29, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19241458

RESUMO

Prothoracicotropic hormone (PTTH) is a homodimeric brain peptide hormone that positively regulates the production of ecdysteroids by the prothoracic gland of Lepidoptera and probably other insects. PTTH was first purified from heads of adult domestic silkworms, Bombyx mori. Prothoracic glands of Bombyx and Manduca sexta undergo apoptosis well before the adult stage is reached, raising the recurring question of PTTH function at these later stages. Because Bombyx has been domesticated for thousands of years, the possibility exists that the presence of PTTH in adult animals is an accidental result of domestication for silk production. In contrast, Manduca has been raised in the laboratory for only five or six decades. The present study found that Manduca brains contain PTTH at all stages examined post-prothoracic gland apoptosis, i.e., pharate adult and adult life, and that PTTH-dependent changes in protein phosphorylation and protein synthesis were observed in several reproductive and reproduction-associated organs. The data indicate that PTTH indeed plays a role in non-steroidogenic tissues and suggest possible future avenues for determining which cellular processes are being so regulated.


Assuntos
Ecdisteroides/biossíntese , Hormônios de Inseto/metabolismo , Mariposas/fisiologia , Animais , Encéfalo/metabolismo , Larva/fisiologia , Pupa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA