Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(7): 071102, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418924

RESUMO

We report on the control of π-stacking modes (herringbone vs slipped-stack) and photophysical properties of 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene (BP4VA), an anthracene-based organic semiconductor (OSC), by isosteric cocrystallization (i.e., the replacement of one functional group in a coformer with another of "similar" electronic structure) with 2,4,6-trihalophenols (3X-ph-OH, where X = Cl, Br, and I). Specifically, BP4VA organizes as slipped-stacks when cocrystallized with 3Cl-ph-OH and 3Br-ph-OH, while cocrystallization with 3I-ph-OH results in a herringbone mode. The photoluminescence and molecular frontier orbital energy levels of BP4VA were effectively modulated by the presence of 3X-ph-OH through cocrystallization. We envisage that the cocrystallization of OSCs with minimal changes in cocrystal formers can provide access to convenient structural and property diversification for advanced single-crystal electronics.

2.
Med Eng Phys ; 84: 60-67, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977923

RESUMO

Titanium implants are widely used in dental and orthopedic surgeries. Osseointegration phenomena lead to direct contact between bone tissue and the implant surface. The quality of the bone-implant interface (BII), resulting from the properties of newly formed bone, determines the implant stability. This study investigates the BII properties using a dedicated in vivo implant model consisting of a coin-shaped Ti-6Al-4V implant inserted in a rabbit femur for 10 weeks. A gap created below the implant was filled with newly formed bone tissue after healing. The properties of mature and newly formed bone tissues were compared using: i) Raman spectroscopy to assess the nanoscale compositional bone properties and ii) nanoindentation to quantify microscale elastic properties in site-matched regions. The mineral-to-matrix ratio, crystallinity (mineral size and lattice order), and the collagen cross-link ratio were significantly lower in newly formed bone tissue (e.g., a mineral-to-matrix ratio of 9.3 ± 0.5 for proline 853 cm-1) compared to mature bone (15.6 ± 1). Nanoindentation measurements gave Young's modulus of 12.8 ± 1.8 GPa for newly formed bone and 15.7 ± 2.3 GPa for mature bone. This multimodal and multiscale approach leads to a better understanding of osseointegration phenomena.


Assuntos
Interface Osso-Implante , Implantes Dentários , Animais , Osseointegração , Coelhos , Análise Espectral Raman , Propriedades de Superfície , Titânio
3.
ACS Appl Mater Interfaces ; 12(14): 16137-16149, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182420

RESUMO

By using complementary DNA sequences as surface ligands, we selectively allow two individual diffusing "dual-color" carbon dots to interact in situ and in vitro. Spontaneous nanoscale oxidation of surface-abundant nitroso-/nitro-functionalities leads to two distinctly colored carbon dots (CD) which are isolated by polarity driven chromatographic separation. Green- and red-emitting carbon dots (gCD and rCD) were decorated by complementary single-stranded DNAs which produce a marked increase in the fluorescence emission of the respective carbon dots. Mutual colloidal interactions are achieved through hybridization of complementary DNA base pairs attached to the respective particles, resulting in quenching of their photoluminescence. The observed post-hybridization quenching is presumably due to a combined effect from an aggregation of CDs post duplex DNA formation and close proximity of multicolored CDs, having overlapped spectral regions leading to a nonradiative energy transfer process possibly released as heat. This strategy may contribute to the rational design of mutually interacting carbon dots for a better control over the resulting assembly structure for studying different biological phenomenon including molecular cytogenetics. One of the newly synthesized CDs was successfully used to image intracellular location of GAPDH mRNA using an event of change in fluorescence intensity (FI) of CDs. This selectivity was introduced by conjugating an oligonucleotide harboring complementary sequence to GAPDH mRNA. FI of this conjugated carbon dot, rCD-GAPDH, was also found to decrease in the presence of Ca2+, varied in relation to H+ concentrations, and could serve as a tool to quantify the intracellular concentrations of Ca2+ and pH value (H+) which can give important information about cell survival. Therefore, CD-oligonucleotide conjugates could serve as efficient probes for cellular events and interventions.


Assuntos
Técnicas Biossensoriais , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/isolamento & purificação , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Carbono/química , DNA de Cadeia Simples/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Humanos , Pontos Quânticos/química , RNA Mensageiro/química , RNA Mensageiro/isolamento & purificação
4.
Nanoscale ; 10(39): 18510-18519, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30137087

RESUMO

For robust single particle optical detection, a high sensitivity in photoluminescence (PL) of Carbon Dots (CDs) must be achieved. PL sensitivity can be successfully correlated with their surface chemistry but requires high synthetic control without altering their basic surface properties. Here we describe conditions for the controlled synthesis of CDs that resulted in a PL sensitivity at the single-particle level. We report that a stoichiometric catalyst N-methyl morpholine-N-oxide (NMMO) can be used as a 'sacrificial' single additive to aid nanoscale surface oxidation. A 24 h NMMO-mediated oxidation increased coverage of oxidized nanoscale surface 3% to 20.9%. NMMO-oxidized CDs (CD-NMMOs) display superior particle brightness, as evidenced by the increase of light absorbance and an enhancement of quantum yield which is characterized by a series of physicochemical and biophysical experiments. We also demonstrate that CD-NMMOs is well suited for intracellular and single-particle imaging.

5.
Adv Funct Mater ; 27(14)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29456464

RESUMO

Microelectromechanical systems remain an area of significant interest in fundamental and applied research due to their wide ranging applications. Most device designs, however, are largely two-dimensional and constrained to only a few simple geometries. Achieving tunable resonant frequencies or broad operational bandwidths requires complex components and/or fabrication processes. The work presented here reports unusual classes of three-dimensional (3D) micromechanical systems in the form of vibratory platforms assembled by controlled compressive buckling. Such 3D structures can be fabricated across a broad range of length scales and from various materials, including soft polymers, monocrystalline silicon, and their composites, resulting in a wide scope of achievable resonant frequencies and mechanical behaviors. Platforms designed with multistable mechanical responses and vibrationally de-coupled constituent elements offer improved bandwidth and frequency tunability. Furthermore, the resonant frequencies can be controlled through deformations of an underlying elastomeric substrate. Systematic experimental and computational studies include structures with diverse geometries, ranging from tables, cages, rings, ring-crosses, ring-disks, two-floor ribbons, flowers, umbrellas, triple-cantilever platforms, and asymmetric circular helices, to multilayer constructions. These ideas form the foundations for engineering designs that complement those supported by conventional, microelectromechanical systems, with capabilities that could be useful in systems for biosensing, energy harvesting and others.

7.
ACS Nano ; 10(11): 10237-10244, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27934083

RESUMO

Self-assembly via nanoscale phase separation offers an elegant route to fabricate nanocomposites with physical properties unattainable in single-component systems. One important class of nanocomposites are optical metamaterials which exhibit exotic properties and lead to opportunities for agile control of light propagation. Such metamaterials are typically fabricated via expensive and hard-to-scale top-down processes requiring precise integration of dissimilar materials. In turn, there is a need for alternative, more efficient routes to fabricate large-scale metamaterials for practical applications with deep-subwavelength resolution. Here, we demonstrate a bottom-up approach to fabricate scalable nanostructured metamaterials via spinodal decomposition. To demonstrate the potential of such an approach, we leverage the innate spinodal decomposition of the VO2-TiO2 system, the metal-to-insulator transition in VO2, and thin-film epitaxy, to produce self-organized nanostructures with coherent interfaces and a structural unit cell down to 15 nm (tunable between horizontally and vertically aligned lamellae) wherein the iso-frequency surface is temperature-tunable from elliptic to hyperbolic dispersion producing metamaterial behavior. These results provide an efficient route for the fabrication of nanostructured metamaterials and other nanocomposites for desired functionalities.

8.
Proc Natl Acad Sci U S A ; 105(21): 7353-8, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18508969

RESUMO

Because of their potential for use in advanced electronic, nanomechanical, and other applications, large two-dimensional, carbon-rich networks have become an important target to the scientific community. Current methods for the synthesis of these materials have many limitations including lack of molecular-level control and poor diversity. Here, we present a method for the synthesis of two-dimensional carbon nanomaterials synthesized by Mo- and Cu-catalyzed cross-linking of alkyne-containing self-assembled monolayers on SiO(2) and Si(3)N(4). When deposited and cross-linked on flat surfaces, spheres, cylinders, or textured substrates, monolayers take the form of these templates and retain their structure on template removal. These nanomaterials can also be transferred from surface to surface and suspended over cavities without tearing. This approach to the synthesis of monolayer carbon networks greatly expands the chemistry, morphology, and size of carbon films accessible for analysis and device applications.

9.
Proc Natl Acad Sci U S A ; 103(46): 17143-8, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17085594

RESUMO

We developed a class of quasi-3D plasmonic crystal that consists of multilayered, regular arrays of subwavelength metal nanostructures. The complex, highly sensitive structure of the optical transmission spectra of these crystals makes them especially well suited for sensing applications. Coupled with quantitative electrodynamics modeling of their optical response, they enable full multiwavelength spectroscopic detection of molecular binding events with sensitivities that correspond to small fractions of a monolayer. The high degree of spatial uniformity of the crystals, formed by a soft nanoimprint technique, provides the ability to image binding events over large areas with micrometer spatial resolution. These features, together with compact form factors, low-cost fabrication procedures, simple readout apparatus, and ability for direct integration into microfluidic networks and arrays, suggest promise for these devices in label-free bioanalytical detection systems.


Assuntos
Técnicas Biossensoriais/métodos , Imageamento Tridimensional/métodos , Análise Espectral/métodos , Avidina/metabolismo , Biotina/metabolismo , Cristalização , Fibrinogênio/metabolismo , Nanoestruturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA