Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17257, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319642

RESUMO

There are many applications in which quantitative information about DNA mixtures with different molecular lengths is important. Gene therapy vectors are much longer than can be sequenced individually via short-read NGS. However, vector preparations may contain smaller DNAs that behave differently during sequencing. We have used two library preparations each for Pacific Biosystems (PacBio) and Oxford Nanopore Technologies NGS to determine their suitability for quantitative assessment of varying sized DNAs. Equimolar length standards were generated from E. coli genomic DNA. Both PacBio library preparations provided a consistent length dependence though with a complex pattern. This method is sufficiently sensitive that differences in genomic copy number between DNA from E. coli grown in exponential and stationary phase conditions could be detected. The transposase-based Oxford Nanopore library preparation provided a predictable length dependence, but the random sequence starts caused the loss of original length information. The ligation-based approach retained length information but read frequency was more variable. Modeling of E. coli versus lambda read frequency via cubic spline smoothing showed that the shorter genome could be used as a suitable internal spike-in for DNAs in the 200 bp to 10 kb range, allowing meaningful QC to be carried out with AAV preparations.


Assuntos
Escherichia coli , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Calibragem , Análise de Sequência de DNA/métodos , DNA
2.
Nat Commun ; 11(1): 2181, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358498

RESUMO

Methylation of histone H3 lysine 4 (H3K4) by Set1/COMPASS occurs co-transcriptionally, and is important for gene regulation. Set1/COMPASS associates with the RNA polymerase II C-terminal domain (CTD) to establish proper levels and distribution of H3K4 methylations. However, details of CTD association remain unclear. Here we report that the Set1 N-terminal region and the COMPASS subunit Swd2, which interact with each other, are both needed for efficient CTD binding in Saccharomyces cerevisiae. Moreover, a single point mutation in Swd2 that affects its interaction with Set1 also impairs COMPASS recruitment to chromatin and H3K4 methylation. A CTD interaction domain (CID) from the protein Nrd1 can partially substitute for the Set1 N-terminal region to restore CTD interactions and histone methylation. However, even when Set1/COMPASS is recruited via the Nrd1 CID, histone H2B ubiquitylation is still required for efficient H3K4 methylation, indicating that H2Bub acts after the initial recruitment of COMPASS to chromatin.


Assuntos
Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Metilação , Mutação Puntual , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
3.
Cell ; 176(5): 1083-1097.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30739799

RESUMO

Cell size varies greatly between cell types, yet within a specific cell type and growth condition, cell size is narrowly distributed. Why maintenance of a cell-type specific cell size is important remains poorly understood. Here we show that growing budding yeast and primary mammalian cells beyond a certain size impairs gene induction, cell-cycle progression, and cell signaling. These defects are due to the inability of large cells to scale nucleic acid and protein biosynthesis in accordance with cell volume increase, which effectively leads to cytoplasm dilution. We further show that loss of scaling beyond a certain critical size is due to DNA becoming limiting. Based on the observation that senescent cells are large and exhibit many of the phenotypes of large cells, we propose that the range of DNA:cytoplasm ratio that supports optimal cell function is limited and that ratios outside these bounds contribute to aging.


Assuntos
Crescimento Celular , Senescência Celular/fisiologia , Citoplasma/metabolismo , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Ciclo Celular , Proliferação de Células , Tamanho Celular , Senescência Celular/genética , Fibroblastos/metabolismo , Células HEK293 , Humanos , Cultura Primária de Células , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Transdução de Sinais
4.
Nat Cell Biol ; 20(12): 1410-1420, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397315

RESUMO

Mammalian SWI/SNF chromatin remodelling complexes exist in three distinct, final-form assemblies: canonical BAF (cBAF), PBAF and a newly characterized non-canonical complex (ncBAF). However, their complex-specific targeting on chromatin, functions and roles in disease remain largely undefined. Here, we comprehensively mapped complex assemblies on chromatin and found that ncBAF complexes uniquely localize to CTCF sites and promoters. We identified ncBAF subunits as synthetic lethal targets specific to synovial sarcoma and malignant rhabdoid tumours, which both exhibit cBAF complex (SMARCB1 subunit) perturbation. Chemical and biological depletion of the ncBAF subunit, BRD9, rapidly attenuates synovial sarcoma and malignant rhabdoid tumour cell proliferation. Importantly, in cBAF-perturbed cancers, ncBAF complexes maintain gene expression at retained CTCF-promoter sites and function in a manner distinct from fusion oncoprotein-bound complexes. Together, these findings unmask the unique targeting and functional roles of ncBAF complexes and present new cancer-specific therapeutic targets.


Assuntos
Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Tumor Rabdoide/genética , Sarcoma Sinovial/genética , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HEK293 , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Interferência de RNA , Tumor Rabdoide/metabolismo , Sarcoma Sinovial/metabolismo , Fatores de Transcrição/metabolismo
5.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30249596

RESUMO

Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.


Assuntos
Histonas/metabolismo , RNA Polimerase II/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteína ran de Ligação ao GTP/metabolismo , Imunoprecipitação da Cromatina , Repressão Epigenética , Regulação Fúngica da Expressão Gênica , Histonas/genética , RNA Polimerase II/metabolismo , Transporte de RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Ubiquitinação , Proteína ran de Ligação ao GTP/genética
6.
Genes Dev ; 31(21): 2162-2174, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203645

RESUMO

TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations.


Assuntos
Regiões Promotoras Genéticas/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica/genética , Acetilação , Histonas/metabolismo , Mutação/genética , Ligação Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores de Transcrição/metabolismo
7.
Mol Cell ; 68(4): 773-785.e6, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29129639

RESUMO

Various factors differentially recognize trimethylated histone H3 lysine 4 (H3K4me3) near promoters, H3K4me2 just downstream, and promoter-distal H3K4me1 to modulate gene expression. This methylation "gradient" is thought to result from preferential binding of the H3K4 methyltransferase Set1/complex associated with Set1 (COMPASS) to promoter-proximal RNA polymerase II. However, other studies have suggested that location-specific cues allosterically activate Set1. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments show that H3K4 methylation patterns on active genes are not universal or fixed and change in response to both transcription elongation rate and frequency as well as reduced COMPASS activity. Fusing Set1 to RNA polymerase II results in H3K4me2 throughout transcribed regions and similarly extended H3K4me3 on highly transcribed genes. Tethered Set1 still requires histone H2B ubiquitylation for activity. These results show that higher-level methylations reflect not only Set1/COMPASS recruitment but also multiple rounds of transcription. This model provides a simple explanation for non-canonical methylation patterns at some loci or in certain COMPASS mutants.


Assuntos
Histonas/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Metilação , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinação/fisiologia
8.
Cell Rep ; 6(6): 961-972, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24613354

RESUMO

Methylation of histone H3 lysine 4 by the Set1 subunit of COMPASS correlates with active transcription. Here, we show that Set1 levels are regulated by protein degradation in response to multiple signals. Set1 levels are greatly reduced when COMPASS recruitment to genes, H3K4 methylation, or transcription is blocked. The degradation sequences map to N-terminal regions that overlap a previously identified autoinhibitory domain, as well as the catalytic domain. Truncation mutants of Set1 that cause under- or overexpression produce abnormal H3K4 methylation patterns on transcribed genes. Surprisingly, SAGA-dependent genes are more strongly affected than TFIID-dependent genes, reflecting differences in their chromatin dynamics. We propose that careful tuning of Set1 levels by regulated degradation is critical for the establishment and maintenance of proper H3K4 methylation patterns.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retroalimentação , Genômica , Histona-Lisina N-Metiltransferase/genética , Metilação , Mutação , Ligação Proteica , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell ; 51(6): 850-8, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24035501

RESUMO

The C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNApII), coordinates recruitment of RNA- and chromatin-modifying factors to transcription complexes. It is unclear whether the CTD communicates with the catalytic core region of Rpb1 and thus must be physically connected, or instead can function as an independent domain. To address this question, CTD was transferred to other RNApII subunits. Fusions to Rpb4 or Rpb6, two RNApII subunits located near the original position of CTD, support viability in a strain carrying a truncated Rpb1. In contrast, CTD fusion to Rpb9 on the other side of RNApII does not. Rpb4-CTD and Rpb6-CTD proteins are functional for phosphorylation and recruitment of various factors, albeit with some restrictions and minor defects. Normal CTD functions are not transferred to RNApI or RNApIII by Rbp6-CTD. These results show that, with some spatial constraints, CTD can function even when disconnected from Rpb1.


Assuntos
Cromatina/genética , Estrutura Terciária de Proteína/genética , RNA Polimerase II/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , RNA Polimerases Dirigidas por DNA/biossíntese , RNA Polimerases Dirigidas por DNA/genética , Fosforilação , RNA , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo
10.
Mol Cell ; 49(6): 1019-20, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23541037

RESUMO

Two new studies in this issue of Molecular Cell (Kim et al., 2013 and Wu et al., 2013) provide new insights and reignite debate over how histone H2B ubiquitination promotes methylation of histone H3 lysine 4.

11.
J Biol Chem ; 287(19): 15219-31, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22431730

RESUMO

The Set1 complex (also known as complex associated with Set1 or COMPASS) methylates histone H3 on lysine 4, with different levels of methylation affecting transcription by recruiting various factors to distinct regions of active genes. Neither Set1 nor its associated proteins are essential for viability with the notable exception of Swd2, a WD repeat protein that is also a subunit of the essential transcription termination factor APT (associated with Pta1). Cells lacking Set1 lose COMPASS recruitment but show increased promoter cross-linking of TFIIE large subunit and the serine 5 phosphorylated form of the Rpb1 C-terminal domain. Although Swd2 is normally required for bringing APT to genes, deletion of SET1 restores both viability and APT recruitment to a strain lacking Swd2. We propose a model in which Swd2 is required for APT to overcome antagonism by COMPASS.


Assuntos
Genes Fúngicos/genética , Histona-Lisina N-Metiltransferase/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imunoprecipitação da Cromatina , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Immunoblotting , Metilação , Mutação , Ligação Proteica , ATPases Translocadoras de Prótons/genética , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Mol Cell ; 29(3): 313-23, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18280237

RESUMO

Within the heterochromatin of budding yeast, RNA polymerase II (RNAPII) transcription is repressed by the Sir2 deacetylase. Although heterochromatic silencing is generally thought to be due to limited accessibility of the underlying DNA, there are several reports of RNAPII and basal transcription factors within silenced regions. Analysis of the rDNA array revealed cryptic RNAPII transcription within the "nontranscribed" spacer region. These transcripts are terminated by the Nrd1/Sen1 complex and degraded by the exosome. Mutations in this pathway lead to decreased silencing and dramatic chromatin changes in the rDNA locus. Interestingly, Nrd1 mutants also show higher levels of rDNA recombination, suggesting that the cryptic RNAPII transcription might have a physiological role in regulating rDNA copy number. The Nrd1/Sen1/exosome pathway also contributes to silencing at telomeric loci. These results suggest that silencing of heterochromatic genes in Saccharomyces cerevisiae occurs at both transcriptional and posttranscriptional levels.


Assuntos
Heterocromatina , RNA Polimerase II/metabolismo , Estabilidade de RNA , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , DNA Ribossômico/análise , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reporter , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
13.
EMBO J ; 25(5): 923-31, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16511566

RESUMO

The central dogma of molecular biology inspired by classical work in prokaryotic organisms accounts for only part of the genetic agenda of complex eukaryotes. First, post-transcriptional events lead to the generation of multiple mRNAs, proteins and functions from a single primary transcript, revealing regulatory networks distinct in mechanism and biological function from those controlling RNA transcription. Second, a variety of populous families of small RNAs (small nuclear RNAs, small nucleolar RNAs, microRNAs, siRNAs and shRNAs) assemble on ribonucleoprotein complexes and regulate virtually all aspects of the gene expression pathway, with profound biological consequences. Third, high-throughput methods of genomic analysis reveal that RNAs other than non-protein-coding RNAs (ncRNAs) represent a major component of the transcriptome that may perform novel functions in gene regulation and beyond. Post-transcriptional regulation, small RNAs and ncRNAs provide an expanding picture of the transcriptome that enriches our views of what genes are, how they operate, evolve and are regulated.


Assuntos
Regulação da Expressão Gênica/genética , Genoma , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transcrição Gênica/genética , Animais , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA