Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Proteomics ; 258: 104530, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182786

RESUMO

Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1 h, 6 h, 12 h, or 24 h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation. SIGNIFICANCE: Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.


Assuntos
Venenos de Crotalídeos , Síndromes Neurotóxicas , Mordeduras de Serpentes , Animais , Venenos de Crotalídeos/química , Crotalus/metabolismo , Humanos , Camundongos , Proteínas/metabolismo , Proteômica , Mordeduras de Serpentes/terapia
2.
J Proteomics, v. 258, 104530, abr. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4216

RESUMO

Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1 h, 6 h, 12 h, or 24 h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation. Significance Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.

3.
J Proteomics ; 221: 103779, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32272218

RESUMO

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. SIGNIFICANCE: Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.


Assuntos
Venenos de Crotalídeos , Animais , Brasil , Cerebelo , Venenos de Crotalídeos/toxicidade , Crotalus , Camundongos , Proteômica
4.
J. Proteomics ; 221: 103779, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17597

RESUMO

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. Significance Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.

5.
J Proteomics, v. 221, 103779, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3004

RESUMO

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. Significance Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.

6.
Ticks Tick Borne Dis, v. 9, n. 3, p. 519-525, mar. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2474

RESUMO

The Gene's organ (GO) secretes a waxy substance on eggs that reduces water loss and has antimicrobial properties. The current study evaluated morphological and histochemical aspects of GO in Amblyomma sculptum from the period of post-feeding - when ticks detach from the host - to the stage just before oviposition. In this species, GO is composed of a corpus and two pairs of glands, namely, cranial and caudal. Glandular cells are joined laterally by a system of interdigitating membranes with junctional complexes. Histochemistry showed that lipid droplets became more evident as GO developed, while glycogen gradually disappeared, and proteins were detected only near the onset of oviposition. The ultrastructural results revealed a marked distension of the cuticle filled with an amorphous material. Glandular cells showed poor endoplasmatic reticulum, many mitochondria mainly in the basal cell poles and a very developed basal labyrinth. We concluded that the development of GO in A. sculptum ticks was continuous and progressive, and it started after detachment from the host. Additionally, the ultrastructure study suggests that gland cells have an important absorption ability and a low synthetic activity, which indicates that the majority of wax precursors are derived from haemolymph.

7.
Ticks Tick Borne Dis ; 9(3): p. 519-525, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15133

RESUMO

The Gene's organ (GO) secretes a waxy substance on eggs that reduces water loss and has antimicrobial properties. The current study evaluated morphological and histochemical aspects of GO in Amblyomma sculptum from the period of post-feeding - when ticks detach from the host - to the stage just before oviposition. In this species, GO is composed of a corpus and two pairs of glands, namely, cranial and caudal. Glandular cells are joined laterally by a system of interdigitating membranes with junctional complexes. Histochemistry showed that lipid droplets became more evident as GO developed, while glycogen gradually disappeared, and proteins were detected only near the onset of oviposition. The ultrastructural results revealed a marked distension of the cuticle filled with an amorphous material. Glandular cells showed poor endoplasmatic reticulum, many mitochondria mainly in the basal cell poles and a very developed basal labyrinth. We concluded that the development of GO in A. sculptum ticks was continuous and progressive, and it started after detachment from the host. Additionally, the ultrastructure study suggests that gland cells have an important absorption ability and a low synthetic activity, which indicates that the majority of wax precursors are derived from haemolymph.

8.
Toxicon ; 119: 218-24, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27319295

RESUMO

The presence of specialized cells for venom production in the Lonomia obliqua caterpillar has long been a controversial topic. In this study, we identify a cell inside the spine that specializes in the production of toxins. Our histological study showed that this glandular cell was inserted at the subapical region of the spine, in a constricted region like a ring. This cell type was not observed in all spines of the scolus. The constricted region of the spine observed by scanning electron microscopy displayed a circular groove in which the apical portion of the spine fits perfectly; however, some spines in the same scolus lacked this groove. After breaking off the spine at the most apical region, a small drop of orange or green liquid was observed to flow from its tip. These secretions were analysed by MALDI-ToF and found to possess biochemically different compositions. The green secretion demonstrated greater similarity to the haemolymph of the caterpillar than the orange secretion. Based on our findings, the spines with a groove probably contain the venom glands and produce an orange secretion. However, it is also possible that both secretions play an important role in envenoming because all spines in contact with the skin of the accidental victim should break regardless of whether they are present in a groove.


Assuntos
Larva/fisiologia , Lepidópteros/crescimento & desenvolvimento , Urticária/etiologia , Animais , Larva/anatomia & histologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA