Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570264

RESUMO

Sharks are commonly depicted as intentionally dangerous predators and are considered a threat by the general public, limiting support for and success of global shark conservation. Following the SCM framework, this study aimed at testing the effect of information on the social lives of sharks alone or paired with circumstantial humor on the participants' perceived warmth of sharks before visiting an aquarium. The present study took place in a naturalistic setting, allowing testing of the variables in a pseudo-real-world environment where results can objectively help in the implementation of strategies on the ground. A total sample of 303 visitors participated in this study, where three conditions (control: 100; social information: 102; social information with humor: 101) were tested. Results showed that, although mild, it was possible to affect the warmth dimension of the shark's stereotype, most likely due to the presence of information about the social lives of sharks. This information slightly leveraged the perceived warmth dimension, although still far from the less threatening stereotype as aimed. Results also highlight the possible importance of using videos within the strategic communication and education approaches in aquariums in order to be most effective in challenging the shark stereotype. Limitations and future research ideas are explored.

2.
Sci Rep ; 13(1): 11981, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488173

RESUMO

Animals and their gut microbes mutually benefit their health. Nutrition plays a central role in this, directly influencing both host and microbial fitness and the nature of their interactions. This makes nutritional symbioses a complex and dynamic tri-system of diet-microbiota-host. Despite recent discoveries on this field, full control over the interplay among these partners is challenging and hinders the resolution of fundamental questions, such as how to parse the gut microbes' effect as raw nutrition or as symbiotic partners? To tackle this, we made use of the well-characterized Drosophila melanogaster/Lactiplantibacillus plantarum experimental model of nutritional symbiosis to generate a quantitative framework of gut microbes' effect on the host. By coupling experimental assays and Random Forest analysis, we show that the beneficial effect of L. plantarum strains primarily results from the active relationship as symbionts rather than raw nutrients, regardless of the bacterial strain. Metabolomic analysis of both active and inactive bacterial cells further demonstrated the crucial role of the production of beneficial bacterial metabolites, such as N-acetylated-amino-acids, as result of active bacterial growth and function. Altogether, our results provide a ranking and quantification of the main bacterial features contributing to sustain animal growth. We demonstrate that bacterial activity is the predominant and necessary variable involved in bacteria-mediated benefit, followed by strain-specific properties and the nutritional potential of the bacterial cells. This contributes to elucidate the role of beneficial bacteria and probiotics, creating a broad quantitative framework for host-gut microbiome that can be expanded to other model systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Drosophila melanogaster/microbiologia , Bactérias , Nutrientes , Simbiose
3.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177514

RESUMO

Machine vision systems are widely used in assembly lines for providing sensing abilities to robots to allow them to handle dynamic environments. This paper presents a comparison of 3D sensors for evaluating which one is best suited for usage in a machine vision system for robotic fastening operations within an automotive assembly line. The perception system is necessary for taking into account the position uncertainty that arises from the vehicles being transported in an aerial conveyor. Three sensors with different working principles were compared, namely laser triangulation (SICK TriSpector1030), structured light with sequential stripe patterns (Photoneo PhoXi S) and structured light with infrared speckle pattern (Asus Xtion Pro Live). The accuracy of the sensors was measured by computing the root mean square error (RMSE) of the point cloud registrations between their scans and two types of reference point clouds, namely, CAD files and 3D sensor scans. Overall, the RMSE was lower when using sensor scans, with the SICK TriSpector1030 achieving the best results (0.25 mm ± 0.03 mm), the Photoneo PhoXi S having the intermediate performance (0.49 mm ± 0.14 mm) and the Asus Xtion Pro Live obtaining the higher RMSE (1.01 mm ± 0.11 mm). Considering the use case requirements, the final machine vision system relied on the SICK TriSpector1030 sensor and was integrated with a collaborative robot, which was successfully deployed in an vehicle assembly line, achieving 94% success in 53,400 screwing operations.

4.
BMC Biol ; 20(1): 290, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575413

RESUMO

BACKGROUND: Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS: We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS: Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Drosophila melanogaster/genética , Drosophila , Mamíferos , Simbiose
5.
iScience ; 25(6): 104357, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601912

RESUMO

Commensal bacteria are known to promote host growth. Such effect partly relies on the capacity of microbes to regulate the host's transcriptional response. However, these evidences mainly come from comparing the transcriptional response caused by commensal bacteria with that of axenic animals, making it difficult to identify the animal genes that are specifically regulated by beneficial microbes. Here, we employ Drosophila melanogaster associated with Lactiplantibacillus plantarum to understand the host genetic pathways regulated by beneficial bacteria and leading to improved host growth. We show that microbial benefit to the host relies on the downregulation of peptidoglycan-recognition proteins. Specifically, we report that bacterial proliferation triggers the lower expression of PGRP-SC1 in larval midgut, which ultimately leads to improved host growth and development. Our study helps elucidate the mechanisms underlying the beneficial effect exerted by commensal bacteria, defining the role of immune effectors in the relationship between Drosophila and its gut microbes.

6.
Neurochem Res ; 47(2): 218-233, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34586585

RESUMO

Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.


Assuntos
Encéfalo , Microglia , Encéfalo/fisiologia , Sistema Nervoso Central , Homeostase/fisiologia , Microglia/fisiologia
7.
Mol Neurobiol ; 59(2): 872-889, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796462

RESUMO

Microglia, the 'resident immunocompetent cells' of the central nervous system (CNS), are key players in innate immunity, synaptic refinement and homeostasis. Dysfunctional microglia contribute heavily to creating a toxic inflammatory milieu, a driving factor in the pathophysiology of several CNS disorders. Therefore, strategies to modulate the microglial function are required to tackle exacerbated tissue inflammation. Carbon monoxide (CO), an endogenous gaseous molecule produced by the degradation of haem, has anti-inflammatory, anti-apoptotic, and pro-homeostatic and cytoprotective roles, among others. ALF-826A, a novel molybdenum-based CO-releasing molecule, was used for the assessment of neuron-microglia remote communication. Primary cultures of rat microglia and neurons, or the BV-2 microglial and CAD neuronal murine cell lines, were used to study the microglia-neuron interaction. An approach based on microglial-derived conditioned media in neuronal culture was applied. Medium derived from CO-treated microglia provided indirect neuroprotection against inflammation by limiting the lipopolysaccharide (LPS)-induced expression of reactivity markers (CD11b), the production of reactive oxygen species (ROS) and the secretion of inflammatory factors (TNF-α, nitrites). This consequently prevented neuronal cell death and maintained neuronal morphology. In contrast, in the absence of inflammatory stimulus, conditioned media from CO-treated microglia improved neuronal morphological complexity, which is an indirect manner of assessing neuronal function. Likewise, the microglial medium also prevented neuronal cell death induced by pro-oxidant tert-Butyl hydroperoxide (t-BHP). ALF-826 treatment reinforced microglia secretion of Interleukin-10 (IL-10) and adenosine, mediators that may protect against t-BHP stress in this remote communication model. Chemical inhibition of the adenosine receptors A2A and A1 reverted the CO-derived neuroprotective effect, further highlighting a role for CO in regulating neuron-microglia communication via purinergic signalling. Our findings indicate that CO has a modulatory role on microglia-to-neuron communication, promoting neuroprotection in a non-cell autonomous manner. CO enhances the microglial release of neurotrophic factors and blocks exacerbated microglial inflammation. CO improvement of microglial neurotrophism under non-inflammatory conditions is here described for the first time.


Assuntos
Microglia , Fármacos Neuroprotetores , Animais , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos
8.
Polymers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960970

RESUMO

In the work presented herein, the structural integrity of polymeric functional components made of Nylon-645 and Polylactic acid (PLA) produced by additive manufacturing (Fused Deposition Modelling, FDM) is studied. The PLA component under study was selected from the production line of a brewing company, and it was redesigned and analyzed using the Finite Element Method, 3D printed, and installed under real service. The results obtained indicated that, even though the durability of the 3D printed part was lower than the original, savings of about EUR 7000 a year could be achieved for the component studied. Moreover, it was shown that widespread use of AM with other specific PLA components could result in even more significant savings. Additionally, a metallic hanger (2700 kg/m3) from the cockpit of an airplane ATR 70 series 500 was successfully redesigned and additively manufactured in Nylon 645, resulting in a mass reduction of approximately 60% while maintaining its fit-for-purpose. Therefore, the components produced by FDM were used as fully functional components rather than prototype models, which is frequently stated as a major constraint of the FDM process.

9.
Redox Biol ; 32: 101470, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120335

RESUMO

Carbon monoxide (CO) is a gasotransmitter endogenously produced by the activity of heme oxygenase, which is a stress-response enzyme. Endogenous CO or low concentrations of exogenous CO have been described to present several cytoprotective functions: anti-apoptosis, anti-inflammatory, vasomodulation, maintenance of homeostasis, stimulation of preconditioning and modulation of cell differentiation. The present review revises and discuss how CO regulates cell metabolism and how it is involved in the distinct cytoprotective roles of CO. The first found metabolic effect of CO was its increase on cellular ATP production, and since then much data have been generated. Mitochondria are the most described and studied cellular targets of CO. Mitochondria exposure to this gasotransmitter leads several consequences: ROS generation, stimulation of mitochondrial biogenesis, increased oxidative phosphorylation or mild uncoupling effect. Likewise, CO negatively regulates glycolysis and improves pentose phosphate pathway. More recently, CO has also been disclosed as a regulating molecule for metabolic diseases, such as obesity and diabetes with promising results.


Assuntos
Citoproteção , Mitocôndrias , Monóxido de Carbono , Morte Celular , Biogênese de Organelas
10.
Genetics ; 213(2): 615-632, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395653

RESUMO

The diversity in sperm shape and size represents a powerful paradigm to understand how selection drives the evolutionary diversification of cell morphology. Experimental work on the sperm biology of the male-hermaphrodite nematode Caenorhabditis elegans has elucidated diverse factors important for sperm fertilization success, including the competitive superiority of larger sperm. Yet despite extensive research, the molecular mechanisms regulating C. elegans sperm size and the genetic basis underlying natural variation in sperm size remain unknown. To address these questions, we quantified male sperm size variation of a worldwide panel of 97 genetically distinct C. elegans strains, allowing us to uncover significant genetic variation in male sperm size. Aiming to characterize the molecular genetic basis of C. elegans male sperm size variation using a genome-wide association study, we did not detect any significant quantitative trait loci. We therefore focused on the genetic analysis of pronounced sperm size differences observed between recently diverged laboratory strains (N2 vs. LSJ1/2). Using mutants and quantitative complementation tests, we demonstrate that variation in the gene nurf-1 underlies the evolution of small sperm in the LSJ lineage. Given the previous discovery that this same nurf-1 variation was central for hermaphrodite laboratory adaptation, the evolution of reduced male sperm size in LSJ strains likely reflects a pleiotropic consequence. Together, our results provide a comprehensive quantification of natural variation in C. elegans sperm size and first insights into the genetic determinants of Caenorhabditis sperm size, pointing at an involvement of the NURF chromatin remodeling complex.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Tamanho Celular , Proteínas Cromossômicas não Histona/genética , Espermatozoides/citologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem da Célula/genética , Montagem e Desmontagem da Cromatina , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/patologia , Fertilização/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Masculino , Locos de Características Quantitativas/genética , Espermatozoides/crescimento & desenvolvimento
11.
Redox Biol ; 17: 338-347, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29793167

RESUMO

Over the last decades, the silent-killer carbon monoxide (CO) has been shown to also be an endogenous cytoprotective molecule able to inhibit cell death and modulate mitochondrial metabolism. Neuronal metabolism is mostly oxidative and neurons also use glucose for maintaining their anti-oxidant status by generation of reduced glutathione (GSH) via the pentose-phosphate pathway (PPP). It is established that neuronal differentiation depends on reactive oxygen species (ROS) generation and signalling, however there is a lack of information about modulation of the PPP during adult neurogenesis. Thus, the main goal of this study was to unravel the role of CO on cell metabolism during neuronal differentiation, particularly by targeting PPP flux and GSH levels as anti-oxidant system. A human neuroblastoma SH-S5Y5 cell line was used, which differentiates into post-mitotic neurons by treatment with retinoic acid (RA), supplemented or not with CO-releasing molecule-A1 (CORM-A1). SH-SY5Y cell differentiation supplemented with CORM-A1 prompted an increase in neuronal yield production. It did, however, not alter glycolytic metabolism, but increased the PPP. In fact, CORM-A1 treatment stimulated (i) mRNA expression of 6-phosphogluconate dehydrogenase (PGDH) and transketolase (TKT), which are enzymes for oxidative and non-oxidative phases of the PPP, respectively and (ii) protein expression and activity of glucose 6-phosphate dehydrogenase (G6PD) the rate-limiting enzyme of the PPP. Likewise, whenever G6PD was knocked-down CO-induced improvement on neuronal differentiation was reverted, while pharmacological inhibition of GSH synthesis did not change CO's effect on the improvement of neuronal differentiation. Both results indicate the key role of PPP in CO-modulation of neuronal differentiation. Furthermore, at the end of SH-SY5Y neuronal differentiation process, CORM-A1 supplementation increased the ratio of reduced and oxidized glutathione (GSH/GSSG) without alteration of GSH metabolism. These data corroborate with PPP stimulation. In conclusion, CO improves neuronal differentiation of SH-S5Y5 cells by stimulating the PPP and modulating the GSH system.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Monóxido de Carbono/farmacologia , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/farmacologia
12.
BMC Ecol ; 17(1): 21, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592264

RESUMO

BACKGROUND: Understanding how species adapt to new niches is a central issue in evolutionary ecology. Nutrition is vital for the survival of all organisms and impacts species fitness and distribution. While most Drosophila species exploit rotting plant parts, some species have diversified to use ripe fruit, allowing earlier colonization. The decomposition of plant material is facilitated by yeast colonization and proliferation. These yeasts serve as the main protein source for Drosophila larvae. This dynamic rotting process entails changes in the nutritional composition of the food and other properties, and animals feeding on material at different stages of decay are expected to have behavioural and nutritional adaptations. RESULTS: We compared larval performance, feeding behaviour and adult oviposition site choice between the ripe fruit colonizer and invasive pest Drosophila suzukii, and a closely-related rotting fruit colonizer, Drosophila biarmipes. Through the manipulation of protein:carbohydrate ratios in artificial diets, we found that D. suzukii larvae perform better at lower protein concentrations and consume less protein rich diets relative to D. biarmipes. For adult oviposition, these species differed in preference for substrate hardness, but not for the substrate nutritional composition. CONCLUSIONS: Our findings highlight that rather than being an exclusive specialist on ripe fruit, D. suzukii's adaptation to use ripening fruit allow it to colonize a wider range of food substrates than D. biarmipes, which is limited to soft foods with higher protein concentrations. Our results underscore the importance of nutritional performance and feeding behaviours in the colonization of new food niches.


Assuntos
Drosophila/fisiologia , Animais , Evolução Biológica , Drosophila/crescimento & desenvolvimento , Ecossistema , Meio Ambiente , Comportamento Alimentar , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Oviposição
13.
PLoS One ; 11(5): e0154781, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144388

RESUMO

Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO's increasing number of differentiated neurons in OHSC. In conclusion, CO's increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO's effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies.


Assuntos
Boranos/farmacologia , Carbonatos/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA