Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38626182

RESUMO

CONTEXT: Patients with younger onset of type 2 diabetes (YT2D) have increased risk for kidney failure compared to those with late onset. However, the mechanism of diabetic kidney disease (DKD) progression in this high-risk group is poorly understood. OBJECTIVES: To identify novel biomarkers and potential causal proteins associated with DKD progression in patients with YT2D. DESIGN AND PARTICIPANTS: Among YT2D (T2D onset age ≤ 40 years), 144 DKD progressors (cases) were matched for T2D onset age, sex, and ethnicity with 292 non-progressors (controls) and divided into discovery and validation sets. DKD progression was defined as decline of estimated glomerular filtration rate (eGFR) of 3ml/min/1.73m2 or greater or 40% decline in eGFR from baseline. 1472 plasma proteins were measured through a multiplex immunoassay that uses a proximity extension assay technology. Multivariable logistic regression was used to identify proteins associated with DKD progression. Mendelian randomization (MR) was used to evaluate causal relationship between plasma proteins and DKD progression. RESULTS: 42 plasma proteins were associated with DKD progression, independent of traditional cardio-renal risk factors, baseline eGFR and urine albumin-to-creatinine ratio (uACR). The proteins identified were related to inflammatory and remodelling biological processes. Our findings suggested angiogenin as one of the top signals (odds ratio =5.29, 95% CI 2.39-11.73, P = 4.03 × 10-5). Furthermore, genetically determined plasma angiogenin level was associated with increased odds of DKD progression. CONCLUSION: Large-scale proteomic analysis identified novel proteomic biomarkers for DKD progression in YT2D. Genetic evidence suggest a causal role of plasma angiogenin in DKD progression.

2.
RSC Chem Biol ; 5(4): 372-385, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38576719

RESUMO

Phenotypic screening is a valuable tool to both understand and engineer complex biological systems. We demonstrate the functionality of this approach in the development of cell-free protein synthesis (CFPS) technology. Phenotypic screening identified numerous compounds that enhanced protein production in yeast lysate CFPS reactions. Notably, many of these were competitive ATP kinase inhibitors, with the exploitation of their inherent substrate promiscuity redirecting ATP flux towards heterologous protein expression. Chemoproteomic-guided strain engineering partially phenocopied drug effects, with a 30% increase in protein yield observed upon deletion of the ATP-consuming SSA1 component of the HSP70 chaperone. Moreover, drug-mediated metabolic rewiring coupled with template optimization generated the highest protein yields in yeast CFPS to date using a hitherto less efficient, but more cost-effective glucose energy regeneration system. Our approach highlights the utility of target-agnostic phenotypic screening and target identification to deconvolute cell-lysate complexity, adding to the expanding repertoire of strategies for improving CFPS.

3.
Immunity ; 55(11): 2187-2205.e5, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351376

RESUMO

Bats are reservoir hosts of many zoonotic viruses with pandemic potential. We utilized single-cell transcriptome sequencing (scRNA-seq) to analyze the immune response in bat lungs upon in vivo infection with a double-stranded RNA virus, Pteropine orthoreovirus PRV3M. Bat neutrophils were distinguished by high basal IDO1 expression. NK cells and T cells were the most abundant immune cells in lung tissue. Three distinct CD8+ effector T cell populations could be delineated by differential expression of KLRB1, GFRA2, and DPP4. Select NK and T clusters increased expression of genes involved in T cell activation and effector function early after viral infection. Alveolar macrophages and classical monocytes drove antiviral interferon signaling. Infection expanded a CSF1R+ population expressing collagen-like genes, which became the predominant myeloid cell type post-infection. This work uncovers features relevant to viral disease tolerance in bats, lays a foundation for future experimental work, and serves as a resource for comparative immunology studies.


Assuntos
Quirópteros , Viroses , Animais , Quirópteros/genética , Néctar de Plantas , Transcriptoma , Análise de Célula Única , Perfilação da Expressão Gênica
4.
Biol Open ; 11(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259662

RESUMO

Spc110 is an essential component of the spindle pole body (SPB), the yeast equivalent of the centrosome, that recruits the γ-tubulin complex to the nuclear side of the SPB to produce the microtubules that form the mitotic spindle. Here, we identified phosphosites S11 and S36 in maternally originated Spc110 and explored their functions in vivo. Yeast expressing non-phosphorylatable Spc110S11A had a distinct spindle phenotype characterised by higher levels of α-tubulin, which was frequently asymmetrically distributed between the two SPBs. Furthermore, expression of the double mutant Spc110S11AS36A had a delayed cell cycle progression. Specifically, the final steps of mitosis were delayed in Spc110S11AS36A cells, including expression and degradation of the mitotic cyclin Clb2, disassembling the mitotic spindle and re-localizing Cdc14 to the nucleoli, resulting in late mitotic exit and entry in G1. Thus, we propose that Spc110 phosphorylation at S11 and S36 is required to regulate timely cell cycle progression in budding yeast. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Centrossomo/metabolismo , Corpos Polares do Fuso/metabolismo , Fuso Acromático/metabolismo , Mitose , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Cancer Immunol Immunother ; 71(11): 2583-2596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35299256

RESUMO

Non-keratinizing nasopharyngeal carcinoma (NPC) is a malignancy with a poor prognosis for relapsing patients and those with metastatic disease. Here, we identify a novel disease mechanism of NPC which may be its Achilles' heel that makes it susceptible to immunotherapy. CD137 is a potent costimulatory receptor on activated T cells, and CD137 agonists strongly enhance anti-tumor immune responses. A negative feedback mechanism prevents overstimulation by transferring CD137 from T cells to CD137 ligand (CD137L)-expressing antigen presenting cells (APC) during cognate interaction, upon which the CD137-CD137L complex is internalized and degraded. We found ectopic expression of CD137 on 42 of 122 (34.4%) NPC cases, and that CD137 is induced by the Epstein-Barr virus latent membrane protein (LMP) 1. CD137 expression enables NPC to hijack the inbuilt negative feedback mechanism to downregulate the costimulatory CD137L on APC, facilitating its escape from immune surveillance. Further, the ectopically expressed CD137 signals into NPC cells via the p38-MAPK pathway, and induces the expression of IL-6, IL-8 and Laminin γ2. As much as ectopic CD137 expression may support the growth and spread of NPC, it may be a target for its immunotherapeutic elimination. Natural killer cells that express a CD137-specific chimeric antigen receptor induce death in CD137+ NPC cells, in vitro, and in vivo in a murine xenograft model. These data identify a novel immune escape mechanism of NPC, and lay the foundation for an urgently needed immunotherapeutic approach for NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Receptores de Antígenos Quiméricos , Ligante 4-1BB , Animais , Herpesvirus Humano 4 , Humanos , Interleucina-6 , Interleucina-8 , Laminina , Camundongos , Carcinoma Nasofaríngeo , Recidiva Local de Neoplasia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
6.
Environ Sci Technol ; 55(3): 1842-1851, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33459556

RESUMO

Chemical proteomics methods have been used as effective tools to identify novel protein targets for small molecules. These methods have great potential to be applied as environmental toxicants to figure out their mode of action. However, these assays usually generate dozens of possible targets, making it challenging to validate the most important one. In this study, we have integrated the cellular thermal shift assay (CETSA), quantitative proteomics, metabolomics, computer-assisted docking, and target validation methods to uncover the protein targets of monoethylhexyl phthalate (MEHP). Using the mass spectrometry implementation of CETSA (MS-CETSA), we have identified 74 possible protein targets of MEHP. The Gene Ontology (GO) enrichment integration was further conducted for the target proteins, the cellular dysregulated proteins, and the metabolites, showing that cell cycle dysregulation could be one primary change due to the MEHP-induced toxicity. Flow cytometry analysis confirmed that hepatocytes were arrested at the G1 stage due to the treatment with MEHP. Subsequently, the potential protein targets were ranked by their binding energy calculated from the computer-assisted docking with MEHP. In summary, we have demonstrated the development of interactomics workflow to simplify the redundant information from multiomics data and identified novel cell cycle regulatory protein targets (CPEB4, ANAPC5, and SPOUT1) for MEHP.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Ciclo Celular , Dietilexilftalato/toxicidade , Proteínas , Proteômica
7.
Environ Sci Technol ; 54(24): 15925-15934, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33225693

RESUMO

Monoethylhexyl phthalate (MEHP) is one of the main active metabolites of the plasticizer di(2-ethylhexyl) phthalate. It has been known that MEHP has an impact on lipolysis; however, its mechanism on the cellular lipid metabolism remains largely unclear. Here, we first utilized global lipid profiling to fully characterize the lipid synthesis and degradation pathways upon MEHP treatment on hepatic cells. Meanwhile, we further identified the possible MEHP-targeted proteins in living cells using the cellular thermal shift assay (CETSA) method. The lipidomics results showed that there was a significant accumulation of fatty acids and other lipids in the cell. The CETSA identified 18 proteins and fatty acid ß-oxidation inhibition pathways that were significantly perturbed. MEHP's binding with selected proteins HADH and HSD17B10 was further evaluated using molecule docking, and results showed that MEHP has higher affinities as compared to endogenous substrates, which was further experimentally confirmed in the surface plasma resonance interaction assay. In summary, we found a novel mechanism for MEHP-induced lipid accumulation, which was probably due to its inhibitive effects on the enzymes in fatty acid ß-oxidation. This mechanism substantiates the public concerns on the high exposure level to plasticizers and their possible role as an obesogen.


Assuntos
Dietilexilftalato , Ácidos Graxos , Hepatócitos , Lipólise , Ácidos Ftálicos
8.
Elife ; 92020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32066522

RESUMO

In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.


Malaria is a life-threatening disease transmitted by mosquitoes infected with Plasmodium parasites. Part of the parasite life cycle happens inside human red blood cells. The surface of an infected red blood cell is coated with parasite proteins, which attract the attention of white blood cells called monocytes. These immune cells circulate in the bloodstream and use a process called phagocytosis to essentially 'eat' any infected cells they encounter. However, the monocytes cannot always reach the infected cells. Some of the proteins made by the parasites make the infected red blood cells stickier than normal. This allows the infected red blood cells to surround themselves in a protective cage of uninfected red blood cells. Known as "rosettes" because of their flower-like shape, these cages seem to protect the infected cells from attack by the immune system. Lee et al. noticed that adding white blood cells to parasite-infected red blood cells made them clump together more, but it was unclear exactly how and why this happened. To find out, Lee et al. took fluid from around monocytes grown in the laboratory and added it to red blood cells infected with Plasmodium parasites. This made the cells clump together, suggesting that something in the fluid may potentially be alerting the parasites to impending immune attack. The fluid contained almost 700 different molecules, and Lee et al. narrowed down their investigations to the five most likely candidates. Interfering with the activities of these five proteins revealed that one ­ a protein IGFBP7 ­ not only alerted the parasites but also helped them to form the rosettes. It turns out that the parasites appear to use IGFBP7 like a bridge, linking it to two other human proteins to stick red blood cells together. Once the rosettes had formed, the monocytes were unable to eat the infected blood cells by themselves. Instead several monocytes had to work together as a team to consume the whole rosette. Further research is now needed to shed light on this interaction between malaria parasites and human cells. Such research would be particularly relevant in the clinical setting, since some previous studies has linked the forming of rosettes to the severity of disease for malaria.


Assuntos
Eritrócitos/parasitologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fagocitose , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Meios de Cultura , Humanos , Ligantes , Testes de Neutralização , Células THP-1
9.
Oncogene ; 38(22): 4352-4365, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770899

RESUMO

Anti-microtubule agents are frequently used as anticancer therapeutics. Cell death induced by these agents is considered to be due to sustained mitotic arrest caused by the activation of spindle assembly checkpoint (SAC). However, some cell types are resistant to mitotic cell death. Cells' ability to escape mitotic arrest (mitotic slippage) is thought to be a major mechanism contributing to this resistance. Here, we show that resistance to cell death induced by anti-mitotic agents is not linked to cells' capacity to undergo mitotic slippage as generally believed but is dependent on the state of BimEL regulation during mitosis. While transcriptional repression of BimEL in the mitotic death-resistant cells involves polycomb repressive complex 2 (PRC2)-mediated histone trimethylation, the BimEL protein is destabilized by cullin 1/4A-ßTrCP-dependent degradation involving activation of cullin 1/4A by neddylation. These results imply that pharmacological augmentation of BimEL activity in anti-microtubule drug-resistant tumors may have important therapeutic implications.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Morte Celular/genética , Resistência a Medicamentos/genética , Microtúbulos/genética , Células A549 , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Resistência a Medicamentos/efeitos dos fármacos , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Metilação/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Mitose/genética , Complexo Repressor Polycomb 2/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA