Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(4): pgae138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638835

RESUMO

Colors are well studied in bird plumage but not in other integumentary structures. In particular, iridescent colors from structures other than plumage are undescribed in birds. Here, we show that a multilayer of keratin and lipids is sufficient to produce the iridescent bill of Spermophaga haematina. Furthermore, that the male bill is presented to the female under different angles during display provides support for the hypothesis that iridescence evolved in response to sexual selection. This is the first report of an iridescent bill, and only the second instance of iridescence in birds in which melanosomes are not involved. Furthermore, an investigation of museum specimens of an additional 98 species, showed that this evolved once, possibly twice. These results are promising, as they suggest that birds utilize a wider array of physical phenomena to produce coloration and should further stimulate research on nonplumage integumentary colors.

2.
J Fish Biol ; 98(4): 1007-1017, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32242924

RESUMO

One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.


Assuntos
Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Óptica , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Biol Open ; 8(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126903

RESUMO

Zebrafish is now widely used in biomedical research as a model for human diseases, but the relevance of the model depends on a rigorous analysis of the phenotypes obtained. Many zebrafish disease models, experimental techniques and manipulations take advantage of fluorescent reporter molecules. However, phenotypic analysis often does not go beyond establishing overall distribution patterns of the fluorophore in whole-mount embryos or using vibratome or paraffin sections with poor preservation of tissue architecture and limited resolution. Obtaining high-resolution data of fluorescent signals at the cellular level from internal structures mostly depends on the availability of expensive imaging technology. Here, we propose a new and easily applicable protocol for embedding and sectioning of zebrafish embryos using in-house prepared glycol methacrylate (GMA) plastic that is suited for preservation of fluorescent signals (including photoactivatable fluorophores) without the need for antibodies. Four main approaches are described, all involving imaging fluorescent signals on semithin (3 µm or less) sections. These include sectioning transgenic animals, whole-mount immunostained embryos, cell tracking, as well as on-section enzyme histochemistry.

4.
Front Physiol ; 5: 386, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25339911

RESUMO

The canonical (ß-catenin dependent) Wnt signaling pathway has emerged as a likely candidate for regulating tooth replacement in continuously renewing dentitions. So far, the involvement of canonical Wnt signaling has been experimentally demonstrated predominantly in amniotes. These studies tend to show stimulation of tooth formation by activation of the Wnt pathway, and inhibition of tooth formation when blocking the pathway. Here, we report a strong and dynamic expression of the soluble Wnt inhibitor dickkopf1 (dkk1) in developing zebrafish (Danio rerio) tooth germs, suggesting an active repression of Wnt signaling during morphogenesis and cytodifferentiation of a tooth, and derepression of Wnt signaling during start of replacement tooth formation. To further analyse the role of Wnt signaling, we used different gain-of-function approaches. These yielded disjunct results, yet none of them indicating enhanced tooth replacement. Thus, masterblind (mbl) mutants, defective in axin1, mimic overexpression of Wnt, but display a normally patterned dentition in which teeth are replaced at the appropriate times and positions. Activating the pathway with LiCl had variable outcomes, either resulting in the absence, or the delayed formation, of first-generation teeth, or yielding a regular dentition with normal replacement, but no supernumerary teeth or accelerated tooth replacement. The failure so far to influence tooth replacement in the zebrafish by perturbing Wnt signaling is discussed in the light of (i) potential technical pitfalls related to dose- or time-dependency, (ii) the complexity of the canonical Wnt pathway, and (iii) species-specific differences in the nature and activity of pathway components. Finally, we emphasize the importance of in-depth knowledge of the wild-type pattern for reliable interpretations. It is hoped that our analysis can be inspiring to critically assess and elucidate the role of Wnt signaling in tooth development in polyphyodonts.

5.
Dev Genes Evol ; 218(8): 427-37, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18642027

RESUMO

To validate the use of Atlantic salmon (Salmo salar L.) as a model species in research on the mechanism of continuous tooth replacement, we have started to collect data on the molecular control underlying tooth formation in this species. This study reports expression patterns in the lower jaw dentition of a number of key regulatory genes such as bmp2, bmp4, and sox9 and structural genes such as col1alpha 1 and osteocalcin (= bgp, Bone Gla Protein) by means of in situ hybridization using salmon-specific, digoxygenin-labeled antisense riboprobes. We compare expression of these genes to that in other skeletogenic cells in the lower jaw (osteoblasts, chondroblasts, and chondrocytes). Our studies reveal both expression patterns that are in accordance to studies on mammalian tooth development and patterns that are specific to salmon, or teleosts. The epithelial expression of sox9 and a shift of the expression of bmp2 from epithelium to mesenchyme have also been observed during mammalian tooth development. Different from previous reports are the expressions of col1alpha 1 and osteocalcin. In contrast to what has been reported for zebrafish, osteocalcin is not expressed in odontoblasts, nor in the osteoblasts involved in the attachment of the teeth. At the lower jaw, osteocalcin is expressed in mature and/or resting osteoblasts only. As expected, col1alpha 1 is expressed in odontoblasts. Surprisingly, it is also strongly expressed in the inner dental epithelium, representing the first report of ameloblast involvement in collagen type I transcription. Whether the collagen is translated and secreted into the enameloid remains to be demonstrated.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Salmo salar/embriologia , Salmo salar/genética , Dente/embriologia , Animais , Dentição , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hibridização In Situ , Arcada Osseodentária/embriologia , Dente/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA