Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zootaxa ; 5410(1): 91-111, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480255

RESUMO

We describe a new genus Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914, a tick of North Queensland, Australia, and Papua New Guinea.


Assuntos
Carrapatos , Animais , Queensland , Amblyomma , Papua Nova Guiné , Austrália
2.
Parasit Vectors ; 16(1): 317, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670353

RESUMO

BACKGROUND: Borrelia are important disease-causing tick- and louse-borne spirochaetes than can infect a wide variety of vertebrates, including humans and reptiles. Reptile-associated (REP) Borrelia, once considered a peculiarity, are now recognised as a distinct and important evolutionary lineage, and are increasingly being discovered worldwide in association with novel hosts. Numerous novel Borrelia spp. associated with monitor lizards (Varanus spp.) have been recently identified throughout the Indo-Pacific region; however, there is a lack of genomic data on these Borrelia. METHODS: We used metagenomic techniques to sequence almost complete genomes of novel Borrelia spp. from Varanus varius and Varanus giganteus from Australia, and used long- and short-read technologies to sequence the complete genomes of two strains of a novel Borrelia sp. previously isolated from ticks infesting Varanus salvator from Indonesia. We investigated intra- and interspecies genomic diversity, including plasmid diversity and relatedness, among Varanus-associated Borrelia and other available REP Borrelia and, based on 712 whole genome orthologues, produced the most complete phylogenetic analysis, to the best of our knowledge, of REP Borrelia to date. RESULTS: The genomic architecture of Varanus-associated Borrelia spp. is similar to that of Borrelia spp. that cause relapsing fever (RF), and includes a highly conserved megaplasmid and numerous smaller linear and circular plasmids that lack structural consistency between species. Analysis of PF32 and PF57/62 plasmid partitioning genes indicated that REP Borrelia plasmids fall into at least six distinct plasmid families, some of which are related to previously defined Borrelia plasmid families, whereas the others appear to be unique. REP Borrelia contain immunogenic variable major proteins that are homologous to those found in Borrelia spp. that cause RF, although they are limited in copy number and variability and have low sequence identities to RF variable major proteins. Phylogenetic analyses based on single marker genes and 712 single copy orthologs also definitively demonstrated the monophyly of REP Borrelia as a unique lineage. CONCLUSIONS: In this work we present four new genomes from three novel Borrelia, and thus double the number of REP Borrelia genomes publicly available. The genomic characterisation of these Borrelia clearly demonstrates their distinctiveness as species, and we propose the names Borrelia salvatorii, 'Candidatus Borrelia undatumii', and 'Candidatus Borrelia rubricentralis' for them.


Assuntos
Borrelia , Lagartos , Febre Recorrente , Animais , Humanos , Indonésia , Filogenia , Genômica , Austrália
4.
Sci Rep ; 10(1): 16048, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994522

RESUMO

Natural selection is expected to select for and maintain maternal behaviors associated with choosing a nest site that promotes successful hatching of offspring, especially in animals that do not exhibit parental care such as reptiles. In contrast to temperature effects, we know little about how soil moisture contributes to successful hatching and particularly how it shapes nest site choice behavior in nature. The recent revelation of exceptionally deep nesting in lizards under extreme dry conditions underscored the potential for the hydric environment in shaping the evolution of nest site choice. But if deep nesting is an adaptation to dry conditions, is there a plastic component such that mothers would excavate deeper nests in drier years? We tested this hypothesis by excavating communal warrens of a large, deep-nesting monitor lizard (Varanus panoptes), taking advantage of four wet seasons with contrasting rainfall amounts. We found 75 nests during two excavations, including 45 nests after a 4-year period with larger wet season rainfall and 30 nests after a 4-year period with smaller wet season rainfall. Mothers nested significantly deeper in years associated with drier nesting seasons, a finding best explained as a plastic response to soil moisture, because differences in both the mean and variance in soil temperatures between 1 and 4 m deep are negligible. Our data are novel for reptiles in demonstrating plasticity in maternal behavior in response to hydric conditions during the time of nesting. The absence of evidence for other ground-nesting reptile mothers adjusting nest depth in response to a hydric-depth gradient is likely due to the tradeoff between moisture and temperature with changing depth; most ground-nesting reptile eggs are deposited at depths of ~ 2-25 cm-nesting deeper within or outside of that range of depths to achieve higher soil moisture would also generally create cooler conditions for embryos that need adequate heat for successful development. In contrast, extreme deep nesting in V. panoptes allowed us to disentangle temperature and moisture. Broadly, our data suggest that ground-nesting reptiles can assess soil moisture and respond by adjusting the depth of the nest, but may not, due to the cooling effect of nesting deeper. Our results, within the context of previous work, provide a more complete picture of how mothers can promote hatching success through adjustments in nest site choice behavior.


Assuntos
Comportamento de Escolha/fisiologia , Comportamento de Nidação/fisiologia , Animais , Temperatura Baixa , Feminino , Temperatura Alta , Lagartos/metabolismo , Mães , Estações do Ano , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA