Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260364

RESUMO

Recent advancements in printing technologies have greatly improved the fabrication efficiency of flexible and wearable electronics. Electronic textiles (E-textiles) garner particular interest because of their innate and desirable properties (i.e., conformability, breathability, fabric hand), which make them the ideal platform for creating wireless body area networks (WBANs) for wearable healthcare applications. However, current WBANs are limited in use due to a lack of flexible antennas that can provide effective wireless communication and data transfer. In this work, we detail a novel fabrication process for flexible textile-based multifunctional antennas with enhanced dielectric properties. Our fabrication process relies on direct-write printing of a dielectric ink consisting of ultraviolet (UV)-curable acrylates and urethane as well as 4 wt.% 200 nm barium titanate (BT) nanoparticles to enhance the dielectric properties of the naturally porous textile architecture. By controlling the spray-coating process parameters of BT dielectric ink on knit fabrics, the dielectric constant is enhanced from 1.43 to 1.61, while preserving the flexibility and air permeability of the fabric. The novel combination textile substrate shows great flexibility, as only 2 N is required for a 30 mm deformation. The final textile antenna is multifunctional in the sense that it is capable of operating in a full-duplex mode while presenting a relatively high gain of 9.12 dB at 2.3 GHz and a bandwidth of 79 MHz (2.260-2.339 GHz) for each port. Our proposed manufacturing process shows the potential to simplify the assembly of traditionally complex E-textile systems.

2.
ACS Appl Mater Interfaces ; 11(6): 6208-6216, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30644708

RESUMO

Inkjet printing of functional inks on textiles to embed passive electronics devices and sensors is a novel approach in the space of wearable electronic textiles. However, achieving functionality such as conductivity by inkjet printing on textiles is challenged by the porosity and surface roughness of textiles. Nanoparticle-based conductive inks frequently cause blockage/clogging of inkjet printer nozzles, making it a less than ideal method for applying these functional materials. It is also very challenging to create a conformal conductive coating and achieve electrically conductive percolation with the inkjet printing of metal nanoparticle inks on rough and porous textile and paper substrates. Herein, a novel reliable and conformal inkjet printing process is demonstrated for printing particle-free reactive silver ink on uncoated polyester textile knit, woven, and nonwoven fabrics. The particle-free functional ink can conformally coat individual fibers to create a conductive network within the textile structure without changing the feel, texture, durability, and mechanical behavior of the textile. It was found that the conductivity and the resolution of the inkjet-printed tracks are directly related with the packing and the tightness of fabric structures and fiber sizes of the fabrics. It is noteworthy that the electrical conductivity of the inkjet-printed conductive coating on pristine polyethylene terephthalate fibers is improved by an order of magnitude by in situ heat-curing of the textile surface during printing as the in situ heat-curing process minimizes the wicking of the ink into the textile structures. A minimum sheet resistance of 0.2 ± 0.025 and 0.9 ± 0.02 Ω/□ on polyester woven and polyester knit fabrics is achieved, respectively. These findings aim to advance E-textile product design through integration of inkjet printing as a low-cost, scalable, and automated manufacturing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA