RESUMO
BACKGROUND: Similarly to wild poliovirus, vaccine-derived poliovirus (VDPV) strains can cause acute flaccid paralysis, posing a considerable challenge to public health and the eradication of poliovirus. VDPV outbreaks, particularly VDPV type 2 (VDPV2), are increasing worldwide, including in high-income countries with high vaccine coverage. We aimed to conduct a comprehensive analysis of the molecular epidemiology of a widespread VDPV2 outbreak in Israel in 2022-23 using conventional polio identification techniques and whole-genome sequencing. METHODS: In this genomic epidemiology study, we monitored and identified poliovirus type 2 (PV2) through the surveillance of stool samples from individuals with acute flaccid paralysis and related contacts, as well as environmental surveillance of sewage samples. Environmental surveillance involved 15 routine surveillance sites and an additional 30 sites dedicated to monitoring this outbreak, covering approximately 70% of Israel's population between April 1, 2022, and June 30, 2023. Additionally, we performed phylogenetic and mutation analyses using whole-genome, next-generation sequencing of PV2 isolates to identify recombination events, characterise VDPV2 lineages according to the capsid region, and establish the geographical distribution and linkage of PV2 isolates. FINDINGS: We detected 256 genetically linked samples from environmental surveillance, as well as one case of acute flaccid paralysis and four positive contacts associated with the Sabin type 2 oral vaccine strain. Most affected locations showed a high-density population of Jewish Ultra-Orthodox communities. Through high-resolution genomic characterisation and phylogenetic analysis of 202 representative sequences with complete capsid coverage, including isolates from both environmental surveillance and the case of acute flaccid paralysis, a conclusive linkage was established among all detections, confirming them to be part of a single VDPV2 outbreak. This strategy enabled the characterisation of three distinct lineages and established connections between different locations in Israel, including linking the case of acute flaccid paralysis and nearby environmental surveillance detections from the northern region with detections in the geographically distant central region. INTERPRETATION: This study highlights the role of environmental surveillance in the early detection and monitoring of poliovirus circulation, enabling a prompt public health response involving enhanced surveillance and a catch-up campaign with inactivated polio vaccine. Whole-genome sequencing offered valuable insights into the origins of the outbreak, linkage across detections, and the geographical distribution of the virus, with higher resolution than would have been possible with the standard analysis of the VP1 gene alone. FUNDING: None.
Assuntos
Surtos de Doenças , Filogenia , Poliomielite , Poliovirus , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Monitoramento Ambiental/métodos , Fezes/virologia , Genoma Viral , Israel/epidemiologia , Epidemiologia Molecular , Poliomielite/epidemiologia , Poliomielite/virologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral , Esgotos/virologia , Sequenciamento Completo do GenomaRESUMO
The emergence of the SARS-CoV-2 variant BA.2.86.1 raised a considerable concern, due to the large number of potentially virulent mutations. In this study, we developed a novel assay that specifically detects variant BA.2.86.1, and used it to screen environmental samples from wastewater treatment sites across Israel. By using a multiplex assay that included a general SARS-CoV-2 reaction, together with the BA.2.86.1-specific reaction and a control reaction, we quantified the absolute number of viral copies in each sample and its relative abundance, compared with the total copy number of circulating SARS-CoV-2. Evaluation of the new reactions showed that they are both sensitive and specific, detecting down to four copies per reaction, and maintain specificity in the presence of Omicron variants BA.1, 2 and 4 RNA. Examination of 279 samples from 30 wastewater collection sites during August-September 2023 showed that 35 samples (12.5 %) were positive, from 18 sites. Quantitative analysis of the samples showed that the relative abundance of variant BA.2.86.1 with respect to the total viral load of SARS-CoV-2 was very low and consisted between 0.01 % and 0.6 % of the total SARS-CoV-2 circulation. This study demonstrates the importance of combining wastewater surveillance with the development of specialized diagnostic assays, when clinical testing is insufficient. This approach may be useful for timely response by public health authorities in future outbreaks.
Assuntos
COVID-19 , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , Israel , SARS-CoV-2/genética , COVID-19/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Humanos , Monitoramento Ambiental/métodosRESUMO
BACKGROUND: Varicella zoster virus (VZV) is among the leading pathogens causing meningitis and encephalitis. While VZV-PCR-positive CSF is considered a gold-standard for diagnosis, it is not-uncommon to detect VZV-DNA in CSF of patients with other acute or chronic illness. Our goal was to determine the clinical relevance of VZV-PCR-positive CSF when investigating patients with neurological symptoms. METHODS: In this retrospective cohort from the largest hospital in Israel, we collected demographic, clinical and laboratory data of patients with VZV-PCR-positive CSF, analyzing the significance of various parameters. RESULTS: During a 5-years study, 125 patient-unique VZV-PCR-positive CSFs were recorded, in which only 9 alternative diagnoses were noted. The commonest symptoms were headache (N = 104, 83 %) and rash (N = 96, 76 %). PCR-cycle-threshold (Ct), a surrogate of viral burden, did not significantly vary across the clinical manifestations; however, patients with rash and Ct<35 were prone to develop stroke in the following year (N = 6, 7 %). Empiric nucleoside-analogue treatment was not associated with a better outcome compared to treatment administered upon a positive-PCR result. DISCUSSION: Our findings suggest that in patients with neurological symptoms, detection of VZV-DNA in CSF renders VZV the probable culprit. Nevertheless, a systematic evaluation of treatment and follow-up algorithms of patients with suspected or proved VZV meningitis and encephalitis is needed. The benefits of a prompt treatment should be weighed against the potential complications of nucleoside-analogue. Conversely, the propensity for stroke in patients with higher viral-burden, necessitates further studies assessing VZV causal role, directing additional workup, treatment and monitoring policy.
Assuntos
Encefalite , Exantema , Herpes Zoster , Meningite , Acidente Vascular Cerebral , Humanos , Herpesvirus Humano 3/genética , Relevância Clínica , Estudos Retrospectivos , Nucleosídeos , DNA Viral/líquido cefalorraquidiano , Reação em Cadeia da Polimerase , Acidente Vascular Cerebral/complicações , Herpes Zoster/diagnóstico , Líquido CefalorraquidianoRESUMO
BACKGROUND: Enteroviruses (EV) comprise the single most common cause of aseptic meningitis with variable geographical and temporal epidemiology. While EV-PCR in CSF is considered a gold standard for diagnosis, it is not-uncommon to use stool EV as a surrogate. Our aim was to assess the clinical significance of EV-PCR-positive CSF and stool in the investigation of patients with neurological symptoms. METHODS: In this retrospective study from Sheba Medical centre, the largest tertiary hospital in Israel, we collected demographic, clinical and laboratory data of patients with EV-PCR-positive between 2016 and 2020. A comparison between various combinations of EV-PCR-positive CSF and stool was conducted. Data regarding EV strain-type and cycle threshold (Ct) were crossed with clinical symptoms and temporal kinetics. RESULTS: Between 2016-2020, 448 CSF samples with positive EV-PCR were recorded from unique patients, the vast majority of which were diagnosed with meningitis (98%, 443/448). Unlike the diverse strain types of EV background activity, meningitis-related EV showed a clear epidemic pattern. In comparison with the EV CSF+/Stool+ group, the EV CSF-/Stool+ group had frequently more alternative pathogens detected and a higher stool Ct-value. Clinically, EV CSF-/Stool+ patients were less febrile and more lethargic and convulsive. DISCUSSION: The comparison of the EV CSF+/Stool+ and CSF-/Stool+ groups suggests that putative diagnosis of EV meningitis is prudent in the febrile, non-lethargic non-convulsive patients with an EV-PCR-positive stool. Otherwise, the detection of stool EV only, in a non-epidemic setup, especially with a high Ct-value, may be incidental and mandate a continuous diagnostic effort for an alternative culprit.
Assuntos
Infecções por Enterovirus , Enterovirus , Meningite Asséptica , Meningite Viral , Humanos , Lactente , Estudos Retrospectivos , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , Enterovirus/genética , Meningite Viral/epidemiologia , Reação em Cadeia da Polimerase , Meningite Asséptica/diagnósticoRESUMO
INTRODUCTION: Inactivated polio virus (IPV) vaccinations are a mainstay of immunization schedules in developed countries, while oral polio vaccine (OPV) is administered in developing countries and is the main vaccine in outbreaks. Due to circulating wild poliovirus (WPV1) detection in Israel (2013), oral bivalent polio vaccination (bOPV) was administered to IPV primed children and incorporated into the vaccination regimen. OBJECTIVES: We aimed to determine the extent and timeframe of fecal and salivary polio vaccine virus (Sabin strains) shedding following bOPV vaccination among IPV primed children. METHODS: Fecal samples were collected from a convenience sample of infants and toddlers attending 11 Israeli daycare centers. Salivary samples were collected from infants and toddlers following bOPV vaccination. RESULTS: 398 fecal samples were collected from 251 children (ages: 6-32 months), 168 received bOPV vaccination 4-55 days prior to sample collection. Fecal excretion continued among 80 %, 50 %, and 20 %, 2, 3, and 7 weeks following vaccination. There were no significant differences in the rate and duration of positive samples among children immunized with 3 or 4 IPV doses. Boys were 2.3-fold more likely to excrete the virus (p = 0.006). Salivary shedding of Sabin strains occurred in 1/47 (2 %) and 1/49 (2 %) samples 4, and 6 days following vaccination respectively. CONCLUSIONS: Fecal detection of Sabin strains among IPV-primed children continues for 7 weeks; additional doses of IPV do not augment intestinal immunity; limited salivary shedding occurs for up to a week. This data can enhance understanding of intestinal immunity achieved by different vaccination schedules and guide recommendations for contact precautions of children following bOPV vaccination.
Assuntos
Poliomielite , Poliovirus , Masculino , Humanos , Lactente , Pré-Escolar , Israel , Poliomielite/epidemiologia , Vacina Antipólio Oral , Vacina Antipólio de Vírus Inativado , Vacinação , Esquemas de ImunizaçãoRESUMO
In this report, we describe the first national scale multi-laboratory evaluation of monkeypox virus (MPXV) DNA commercial PCR kits. The objective of this study was to evaluate 2 kits by different diagnostic laboratories across Israel. Ten standardized samples were tested simultaneously using the Novaplex (15 laboratories) and Bio-Speedy (seven laboratories) kits. An in-house assay based on previously published reactions was used as reference. Comparison of the results showed high intra-assay agreement between laboratories, with small variations for most samples. The in-house assay had an analytical detection limit of less than 10 copies per reaction. While the 2 commercial kits were able to detect specimens with low viral loads similarly to the in-house assay, significant differences were observed, in the Cq values and relative fluorescence (RF), between the assays. The RF signal of the in-house and Bio-Speedy assays ranged between 5,000 and 10,000 RFU, while the signal in the Novaplex assay was less than 600 RFU. Due to the kit measurement protocol, the Cq values of the Bio-Speedy kit were 5 to 7.5 cycles lower than those of the in-house assay. On the contrary, the Cq values of the Novaplex kit were significantly higher than those of the in-house assay, with differences of 3 to 5 cycles per sample. Our results suggest that while all assays were similar in their overall sensitivity, direct comparison of Cq values between them may be misleading. To our knowledge, this is the first methodical evaluation of commercial MPX test kits. We therefore anticipate that this study would help diagnostic laboratories in choosing a specific MPX detection assay. IMPORTANCE To the best of our knowledge, this study is the first methodical evaluation of commercial kits designed for Monkeypox virus detection. This was done by performing the same tests using the same sample set in multiple laboratories, simultaneously, on a national scale. It therefore provides important and unique information on the performance of such kits and provides a guideline for choosing the assay of choice for monkeypox virus diagnosis in a standard diagnostic laboratory. It also demonstrates potential complications when trying to compare the results of different assays, even when testing exactly the same samples, under identical conditions.
Assuntos
Laboratórios , Monkeypox virus , Monkeypox virus/genética , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase , Carga Viral/métodosRESUMO
BACKGROUND: Outbreaks of enteroviral meningitis occur periodically and may lead to hospitalization and severe disease. OBJECTIVE: To analyze and describe the meningitis outbreak in patients hospitalized in Israel in 2021-2022, during the COVID-19 pandemic. RESULTS: In December 2021, before the emergence of the SARS-CoV-2 omicron variant, an off-season increase in enterovirus (EV) infections was observed among patients hospitalized with meningitis. In January 2022, enterovirus cases decreased by 66% in parallel with the peak of the Omicron wave, and then increased rapidly by 78% in March (compared with February) after a decline in Omicron cases. Sequencing of the enterovirus-positive samples showed a dominance of echovirus 6 (E-6) (29%) before and after the Omicron wave. Phylogenetic analysis found that all 29 samples were very similar and all clustered in the E-6 C1 subtype. The main E-6 symptoms observed were fever and headache, along with vomiting and neck stiffness. The median patient age was 25 years, with a broad range (0-60 years). CONCLUSION: An upsurge in enterovirus cases was observed after the decline of the SARS-CoV-2 omicron wave. The dominant subtype was E-6, which was present prior to the emergence of the omicron variant, but increased rapidly only after the omicron wave decline. We hypothesize that the omicron wave delayed the rise in E-6-associated meningitis.
Assuntos
COVID-19 , Infecções por Enterovirus , Enterovirus , Meningite Viral , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Echovirus 6 Humano , Enterovirus Humano B , Filogenia , Israel/epidemiologia , Pandemias , COVID-19/epidemiologia , SARS-CoV-2 , Meningite Viral/epidemiologiaRESUMO
Israel conducts routine environmental (15 sites) and acute flaccid paralysis (AFP) surveillance for poliovirus. During September 2021, increasing numbers of wastewater samples collected from more than one site in the Jerusalem region proved positive for ambiguous type 3 vaccine-derived poliovirus (aVDPV3), while environmental samples from remaining sampling sites were negative. In late February 2022, a VDPV3, genetically related to the Jerusalem environmental surveillance samples, was isolated from a stool sample collected from a non-immunodeficient, non-immunized child from Jerusalem who developed AFP, indicating that the aVDPV3s were circulating (cVDPV3s) rather than immunodeficiency-related VDPV3s (iVDPVs). In response to these isolations, the Israel Ministry of Health launched a catch-up immunization program.
Assuntos
Poliomielite , Poliovirus , Vacinas , Criança , Humanos , Poliovirus/genética , alfa-Fetoproteínas , Paralisia/epidemiologia , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Monitoramento AmbientalRESUMO
BACKGROUND: Poliovirus post-eradication containment of wild-type 2 poliovirus (PV2) requires the destruction of all materials containing, or potentially containing, PV2. Acute flaccid paralysis (AFP) cases in Israel between 1973 and 1988 were caused by all three serotypes; thus, isolates from cases and case-contacts were either PV2 or potentially contaminated with PV2. AIMS: To provide a proof-of-concept that whole genome sequences (WGS) of wild-type 3 poliovirus (PV3s) could be salvaged from the RNA extracted directly from archived poliovirus stocks avoiding re-amplification of neurovirulent viruses, we link WGSs to case histories and determine the phylogenetic relationships among the PV3s. METHODS: Data retrieved from 427 poliovirus-positive cases reported between 1973 and 1988 identified 85 PV3-associated cases. A total of 71 archived PV3 isolates were available from PV3-positive cases and contacts. WGSs were obtained by NGS from cDNA libraries constructed from RNA extracted directly from archived viral stocks. Sequences were subjected to phylogenetic analysis and linked to case data. RESULTS: WGSs were successfully constructed for 55 isolates. Phylogenetic analysis revealed the circulation of seven lineages of PV3. One lineage, with 23 isolates, presented as an outbreak of six-year duration. Isolates from six other lineages were consistent with subsequent separate introductions, sporadic cases, and limited transmission. Recombinant vaccine-like PV3 recombinants were isolated from some cases. CONCLUSIONS: Whole or near-whole genome sequence information, obtained from RNA extracted directly from the archived material, safely provided detailed genetic information linked to patient data from a time when limited sequence information was previously available and revealed the pattern of transmission of wild PV3 in Israel.
RESUMO
We report an emergence and increase in poliovirus type 2 detection via routine wastewater surveillance in three non-overlapping regions in the Jerusalem region, Israel, between April and July 2022. Sequencing showed genetic linkage among isolates and accumulation of mutations over time, with two isolates defined as vaccine-derived polioviruses (VDPV). This demonstrates the emergence and potential circulation of type 2 VDPV in a high-income country with high vaccine coverage and underscores the importance of routine wastewater surveillance during the polio eradication.
Assuntos
Poliomielite , Poliovirus , Humanos , Poliovirus/genética , Vacina Antipólio Oral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas ResiduáriasRESUMO
In this report, we describe a national-scale monitoring of the SARS-CoV-2 (SC-2) variant dynamics in Israel, using multiple-time sampling of 13 wastewater treatment plants. We used a combination of inclusive and selective quantitative PCR assays that specifically identify variants A19/A20 or B.1.1.7 and tested each sample for the presence and relative viral RNA load of each variant. We show that between December 2020 and March 2021, a complete shift in the SC-2 variant circulation was observed, where the B.1.1.7 replaced the A19 in all examined test points. We further show that the normalized viral load (NVL) values and the average new cases per week reached a peak in January 2021 and then decreased gradually in almost all test points, in parallel with the progression of the national vaccination campaign, during February-March 2021. This study demonstrates the importance of monitoring SC-2 variant by using a combination of inclusive and selective PCR tests on a national scale through wastewater sampling, which is far more amendable for high-throughput monitoring compared with sequencing. This approach may be useful for real-time dynamics surveillance of current and future variants, such as the Omicron (BA.1, BA.2) and other variants.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Israel/epidemiologia , SARS-CoV-2/genética , Águas ResiduáriasRESUMO
Enterovirus D68 (EVD68) was recently identified as an important cause of respiratory illness and acute flaccid myelitis (AFM), mostly in children. Here, we examined 472 pediatric patients diagnosed with severe respiratory illness and screened for EVD68 between April and October 2021. In parallel, samples collected from a wastewater treatment plant (WWTP) covering the residential area of the hospitalized patients were also tested for EVD68. Of the 472 clinical samples evaluated, 33 (7%) patients were positive for EVD68 RNA. All wastewater samples were positive for EVD68, with varying viral genome copy loads. Calculated EVD68 genome copies increased from the end of May until July 2021 and dramatically decreased at the beginning of August. A similar trend was observed in both clinical and wastewater samples during the period tested. Sequence analysis of EVD68-positive samples indicated that all samples originated from the same branch of subclade B3. This study is the first to use wastewater-based epidemiology (WBE) to monitor EVD68 dynamics by quantitative detection and shows a clear correlation with clinically diagnosed cases. These findings highlight the potential of WBE as an important tool for continuous surveillance of EVD68 and other enteroviruses.
Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Criança , Surtos de Doenças , Enterovirus Humano D/genética , Infecções por Enterovirus/epidemiologia , Humanos , Israel/epidemiologia , Águas ResiduáriasRESUMO
In this report, we describe the development of a reverse transcription-quantitative PCR (RT-qPCR) assay, termed Alpha-Delta assay, which can detect all severe acute respiratory syndrome coronavirus 2 (SC-2) variants and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alpha- and Delta-specific reactions in the assay target mutations that are strongly linked to the target variant. The Alpha reaction targets the D3L substitution in the N gene, and the Delta reaction targets the spike gene 156 to 158 mutations. Additionally, we describe a second Delta-specific assay that we use as a confirmatory test for the Alpha-Delta assay that targets the 119 to 120 deletion in the Orf8 gene. Both reactions have similar sensitivities of 15 to 25 copies per reaction, similar to the sensitivity of commercial SC-2 detection tests. The Alpha-Delta assay and the Orf8119del assay were successfully used to classify clinical samples that were subsequently analyzed by whole-genome sequencing. Lastly, the capability of the Alpha-Delta assay and Orf8119del assay to identify correctly the presence of Delta RNA in wastewater samples was demonstrated. This study provides a rapid, sensitive, and cost-effective tool for detecting and classifying two worldwide dominant SC-2 variants. It also highlights the importance of a timely diagnostic response to the emergence of new SC-2 variants with significant consequences on global health. IMPORTANCE The new assays described herein enable rapid, straightforward, and cost-effective detection of severe acute respiratory syndrome coronavirus 2 (SC-2) with immediate classification of the examined sample as Alpha, Delta, non-Alpha, or non-Delta variant. This is highly important for two main reasons: (i) it provides the scientific and medical community with a novel diagnostic tool to rapidly detect and classify any SC-2 sample of interest as Alpha, Delta, or none and can be applied to both clinical and environmental samples, and (ii) it demonstrates how to respond to the emergence of new variants of concern by developing a variant-specific assay. Such assays should improve our preparedness and adjust the diagnostic capacity to serve clinical, epidemiological, and research needs.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Sequenciamento Completo do GenomaRESUMO
Emerging SARS-CoV-2 (SC-2) variants with increased infectivity and vaccine resistance are of major concern. Rapid identification of such variants is important for the public health decision making and to provide valuable data for epidemiological and policy decision making. We developed a multiplex reverse transcriptase quantitative PCR (RT-qPCR) assay that can specifically identify and differentiate between the emerging B.1.1.7 and B.1.351 SC-2 variants. In a single assay, we combined four reactions-one that detects SC-2 RNA independently of the strain, one that detects the D3L mutation, which is specific to variant B.1.1.7, one that detects the 242 to 244 deletion, which is specific to variant B.1.351, and the fourth reaction, which identifies the human RNAseP gene, serving as an endogenous control for RNA extraction integrity. We show that the strain-specific reactions target mutations that are strongly associated with the target variants and not with other major known variants. The assay's specificity was tested against a panel of respiratory pathogens (n = 16), showing high specificity toward SC-2 RNA. The assay's sensitivity was assessed using both in vitro transcribed RNA and clinical samples and was determined to be between 20 and 40 viral RNA copies per reaction. The assay performance was corroborated with Sanger and whole-genome sequencing, showing complete agreement with the sequencing results. The new assay is currently implemented in the routine diagnostic work at the Central Virology Laboratory, and may be used in other laboratories to facilitate the diagnosis of these major worldwide-circulating SC-2 variants. IMPORTANCE This study describes the design and utilization of a multiplex reverse transcriptase quantitative PCR (RT-qPCR) to identify SARS-COV-2 (SC2) RNA in general and, specifically, to detect whether it is of lineage B.1.1.7 or B.1.351. Implementation of this method in diagnostic and research laboratories worldwide may help the efforts to contain the COVID-19 pandemic. The method can be easily scaled up and be used in high-throughput laboratories, as well as small ones. In addition to immediate help in diagnostic efforts, this method may also help in epidemiological studies focused on the spread of emerging SC-2 lineages.
Assuntos
COVID-19/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/métodos , SARS-CoV-2/classificação , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral/genética , Humanos , Israel/epidemiologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Sequenciamento Completo do GenomaRESUMO
Response to and monitoring of viral outbreaks can be efficiently focused when rapid, quantitative, kinetic information provides the location and the number of infected individuals. Environmental surveillance traditionally provides information on location of populations with contagious, infected individuals since infectious poliovirus is excreted whether infections are asymptomatic or symptomatic. Here, we describe development of rapid (1 week turnaround time, TAT), quantitative RT-PCR of poliovirus RNA extracted directly from concentrated environmental surveillance samples to infer the number of infected individuals excreting poliovirus. The quantitation method was validated using data from vaccination with bivalent oral polio vaccine (bOPV). The method was then applied to infer the weekly number of excreters in a large, sustained, asymptomatic outbreak of wild type 1 poliovirus in Israel (2013) in a population where >90% of the individuals received three doses of inactivated polio vaccine (IPV). Evidence-based intervention strategies were based on the short TAT for direct quantitative detection. Furthermore, a TAT shorter than the duration of poliovirus excretion allowed resampling of infected individuals. Finally, the method documented absence of infections after successful intervention of the asymptomatic outbreak. The methodologies described here can be applied to outbreaks of other excreted viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where there are (1) significant numbers of asymptomatic infections; (2) long incubation times during which infectious virus is excreted; and (3) limited resources, facilities, and manpower that restrict the number of individuals who can be tested and re-tested.
RESUMO
Investigation of SARS-CoV-2 spread and identification of variants in sewers has been demonstrated to accurately detect prevalence of viral strains and is advantageous to clinical sampling in population catchment size. Herein, we utilized an established nationwide system of wastewater sampling and viral concentration approaches to perform large-scale surveillance of SARS-CoV-2 variants in nine different locations across Israel that were sampled from August 2020 to February 2021 and sequenced (n = 58). Viral sequences obtained from the wastewater samples had high coverages of the genome, and mutation analyses successfully identified the penetration of the B.1.1.7 variant into Israel in December 2020 in the central and north regions, and its spread into additional regions in January and February 2021, corresponding with clinical sampling results. Moreover, the wastewater analysis identified the B.1.1.7 variant in December 2020 in regions in which non-sufficient clinical sampling was available. Other variants of concern examined, including P.1 (Brazil/Manaus), B.1.429 (USA/California), B.1.526 (USA/New York), A.23.1 (Uganda) and B.1.525 (Unknown origin), did not show consistently elevated frequencies. This study exemplifies that surveillance by sewage is a robust approach which allows to monitor the diversity of SARS-CoV-2 strains circulating in the community. Most importantly, this approach can pre-identify the emergence of epidemiologically or clinically relevant mutations/variants, aiding in public health decision making.
RESUMO
Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) which causes corona virus disease (COVID-19) was first identified in Wuhan, China in December 2019 and has since led to a global pandemic. Importations of SARS-CoV-2 to Israel in late February from multiple countries initiated a rapid outbreak across the country. In this study, SARS-CoV-2 whole genomes were sequenced from 59 imported samples with a recorded country of importation and 101 early circulating samples in February to mid-March 2020 and analyzed to infer clades and mutational patterns with additional sequences identified Israel available in public databases. Recorded importations in February to mid-March, mostly from Europe, led to multiple transmissions in all districts in Israel. Although all SARS-CoV-2 defined clades were imported, clade 20C became the dominating clade in the circulating samples. Identification of novel, frequently altered mutated positions correlating with clade-defining positions provide data for surveillance of this evolving pandemic and spread of specific clades of this virus. SARS-CoV-2 continues to spread and mutate in Israel and across the globe. With economy and travel resuming, surveillance of clades and accumulating mutations is crucial for understanding its evolution and spread patterns and may aid in decision making concerning public health issues.
Assuntos
COVID-19/patologia , Variação Genética , Genoma Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Israel/epidemiologia , Mutação , SARS-CoV-2/isolamento & purificaçãoRESUMO
BACKGROUND: Individuals with primary immune deficiencies (PIDs) may excrete poliovirus for extended periods and remain a major reservoir for polio after eradication. Poliovirus can spread by fecal-oral or oral-oral transmission. In middle- and high-income countries, oral-oral transmission may be more prevalent than fecal-oral transmission of polioviruses where PIDs patients survive longer. Our aim was to determine the prevalence of prolonged or persistent oropharyngeal poliovirus infections in PIDs. METHODS: We performed a literature search for reports of prolonged (excreting poliovirus forâ ≥6 months andâ ≤5 years) or persistent (excreting poliovirus forâ >5 years) poliovirus infections in PIDs. RESULTS: There were 140 PID cases with prolonged or persistent poliovirus infections. All had poliovirus-positive stools. Testing of oropharyngeal mucosa was only reported for 6 cases, 4 of which were positive. Molecular analyses demonstrated independent evolution of poliovirus in the gut and oropharyngeal mucosa in 2 cases. Seven PIDs had multiple lineages of the same poliovirus serotype in stools without information about polioviruses in oropharyngeal mucosa. CONCLUSIONS: Testing for persistence of poliovirus in oropharyngeal mucosa of PID patients is rare, with virus recovered in 4 of 5 cases in whom stools were positive. Multiple lineages or serotypes in 7 additional PID cases may indicate separate foci of infection, some of which might be in oropharyngeal mucosa. We recommend screening throat swabs in addition to stools for poliovirus in PID patients. Containment protocols for reducing both oral-oral and fecal-oral transmission from PID patients must be formulated for hospitals and community settings.
Assuntos
Poliomielite , Poliovirus , Fezes , Humanos , Orofaringe , Poliomielite/diagnóstico , Poliomielite/epidemiologia , SorogrupoRESUMO
The COVID-19 pandemic and the fast global spread of the disease resulted in unprecedented decline in world trade and travel. A critical priority is, therefore, to quickly develop serological diagnostic capacity and identify individuals with past exposure to SARS-CoV-2. In this study serum samples obtained from 309 persons infected by SARS-CoV-2 and 324 of healthy, uninfected individuals as well as serum from 7 COVID-19 patients with 4-7 samples each ranging between 1-92 days post first positive PCR were tested by an "in house" ELISA which detects IgM, IgA and IgG antibodies against the receptor binding domain (RBD) of SARS-CoV-2. Sensitivity of 47%, 80% and 88% and specificity of 100%, 98% and 98% in detection of IgM, IgA and IgG antibodies, respectively, were observed. IgG antibody levels against the RBD were demonstrated to be up regulated between 1-7 days after COVID-19 detection, earlier than both IgM and IgA antibodies. Study of the antibody kinetics of seven COVID 19 patients revealed that while IgG levels are high and maintained for at least 3 months, IgM and IgA levels decline after a 35-50 days following infection. Altogether, these results highlight the usefulness of the RBD based ELISA, which is both easy and cheap to prepare, to identify COVID-19 patients even at the acute phase. Most importantly our results demonstrate that measuring IgG levels alone is both sufficient and necessary to diagnose past exposure to SARS-CoV-2.
Assuntos
Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Imunoglobulina G/imunologia , Pandemias , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/virologia , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade , Adulto JovemRESUMO
This is the first report of persistent oropharyngeal mucosal infection with type 2 poliovirus (iVDPV2) in a primary immune deficient patient (PID) after wild type 2 poliovirus eradication. The iVDPV2 also established persistence in the gut. iVDPV2 at both loci evolved independently. Persistent oral infections present a potential risk for oral-oral as well as fecal-oral poliovirus transmission during transition to a poliovirus 2-free world.