Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1367566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983114

RESUMO

Humanized mouse models are valuable tools for investigating the human immune system in response to infection and injury. We have previously described the human immune system (HIS)-DRAGA mice (HLA-A2.HLA-DR4.Rag1KO.IL-2RgKO.NOD) generated by infusion of Human Leukocyte Antigen (HLA)-matched, human hematopoietic stem cells from umbilical cord blood. By reconstituting human cells, the HIS-DRAGA mouse model has been utilized as a "surrogate in vivo human model" for infectious diseases such as Human Immunodeficiency Virus (HIV), Influenza, Coronavirus Disease 2019 (COVID-19), scrub typhus, and malaria. This humanized mouse model bypasses ethical concerns about the use of fetal tissues for the humanization of laboratory animals. Here in, we demonstrate the presence of human microglia and T cells in the brain of HIS-DRAGA mice. Microglia are brain-resident macrophages that play pivotal roles against pathogens and cerebral damage, whereas the brain-resident T cells provide surveillance and defense against infections. Our findings suggest that the HIS-DRAGA mouse model offers unique advantages for studying the functions of human microglia and T cells in the brain during infections, degenerative disorders, tumors, and trauma, as well as for testing therapeutics in these pathological conditions.


Assuntos
Encéfalo , Modelos Animais de Doenças , Microglia , Linfócitos T , Animais , Microglia/imunologia , Humanos , Camundongos , Encéfalo/imunologia , Linfócitos T/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia
2.
Ageing Res Rev ; 100: 102430, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032611

RESUMO

Human skin ageing is closely related to the ageing of the whole organism, and it's a continuous multisided process that is influenced not only by genetic and physiological factors but also by the cumulative impact of environmental factors. Currently, there is a scientific community need for developing skin models representing ageing processes to (i) enhance understanding on the mechanisms of ageing, (ii) discover new drugs for the treatment of age-related diseases, and (iii) develop effective dermo-cosmetics. Bioengineers worldwide are trying to reproduce skin ageing in the laboratory aiming to better comprehend and mitigate the senescence process. This review provides details on the main ageing molecular mechanisms and procedures to obtain in vitro aged skin models.

3.
Front Immunol ; 15: 1410564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007148

RESUMO

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Assuntos
Imunoterapia , Ligante OX40 , Animais , Ligante OX40/genética , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Feminino , Terapia Genética/métodos , Nanopartículas , Técnicas de Transferência de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Polietilenoimina/química , Humanos , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Polietilenoglicóis/química
4.
ACS Nano ; 18(26): 16776-16789, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885184

RESUMO

Doped metal oxide nanocrystals exhibit a localized surface plasmon resonance that is widely tunable across the mid- to near-infrared region, making them useful for applications in optoelectronics, sensing, and photocatalysis. Surface states pin the Fermi level and induce a surface depletion layer that hinders conductivity and refractive index sensing but can be advantageous for optical modulation. Several strategies have been developed to both synthetically and postsynthetically tailor the depletion layer toward particular applications; however, this understanding has primarily been advanced in Sn-doped In2O3 (ITO) nanocrystals, leaving open questions about generalizing to other doped metal oxides. Here, we quantitatively analyze the depletion layer in In-doped CdO (ICO) nanocrystals, which is shown to have an intrinsically wide depletion layer that leads to broad plasmonic modulation via postsynthetic chemical reduction and ligand exchange. Leveraging these insights, we applied depletion layer tuning to enhance the inherently weak plasmonic coupling in ICO nanocrystal superlattices. Our results demonstrate how an electronic band structure dictates the radial distribution of electrons and governs the response to postsynthetic modulation, enabling the design of tunable and responsive plasmonic materials.

5.
Cell ; 187(14): 3563-3584.e26, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889727

RESUMO

How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.


Assuntos
Besouros , Animais , Besouros/genética , Besouros/metabolismo , Evolução Molecular , Benzoquinonas/metabolismo , Filogenia , Genômica , Simbiose/genética , Transcriptoma , Genoma de Inseto
6.
Infect Immun ; 92(7): e0021624, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38874358

RESUMO

Monocytes play a crucial role in the immune response against pathogens. Here, we sought to determine COVID-19 and the vaccine Gam-COVID-Vac induce long-term changes in the phenotype and cytokine production of circulating monocytes. Monocytes were purified from peripheral blood mononuclear cells of healthy donors who had not had COVID-19 or vaccination, who had received two doses of Gam-COVID-Vac, and who had mild/moderate COVID-19 in the last 6 months and evaluated by flow cytometry. To investigate the effect of SARS-CoV-2 proteins, monocytes were cultured for 2 days with or without stimulation with recombinant SARS-CoV-2 S1 and N peptides. Monocytes obtained from vaccinated and recovered individuals showed increased basal expression of HLA-DR, CD63, CXCR2, and TLR7. We also observed an increased frequency of CD63+ classical monocytes in both groups, as well as an increased frequency of HLA-DR+ non-classical monocytes in the COVID-19-recovered group compared to the control group. Monocytes from vaccinated and recovered donors produced higher basal levels of IL-6, IL-1ß, and TNF-α cytokines. Ex vivo stimulation with SARS-CoV-2 antigens induced increased expression of HLA-DR and TLR7 on monocytes obtained from the control group. The challenge with SARS-CoV-2 antigens had no effect on the production of IL-6, IL-1ß, and TNF-α cytokines by monocytes. The acquired data offer compelling evidence of enduring alterations in both the phenotype and functional status of circulating monocytes subsequent to vaccination with Gam-COVID-Vac and mild/moderate COVID-19 infection. At least some of these changes appear to be a consequence of exposure to SARS-CoV-2 S1 and N antigens.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Citocinas , Monócitos , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Monócitos/imunologia , Citocinas/metabolismo , SARS-CoV-2/imunologia , Masculino , Vacinas contra COVID-19/imunologia , Adulto , Feminino , Pessoa de Meia-Idade , Fenótipo , Vacinação
7.
Pharmaceutics ; 16(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931907

RESUMO

To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications in dentistry treatments due to its prominent antimicrobial, anti-inflammatory, and antioxidant properties. This study aimed to produce and characterize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with berberine and evaluate its antimicrobial activity against relevant endodontic pathogens, Enterococcus faecalis, and Candida albicans. Additionally, its cytocompatibility using gingival fibroblasts was assessed. The polymeric nanoparticle was prepared by the nanoprecipitation method. Physicochemical characterization revealed spheric nanoparticles around 140 nm with ca, -6 mV of surface charge, which was unaffected by the presence of BBR. The alkaloid was successfully incorporated at an encapsulation efficiency of 77% and the designed nanoparticles were stable upon 20 weeks of storage at 4 °C and 25 °C. Free BBR reduced planktonic growth at ≥125 µg/mL. Upon incorporation into PLGA nanoparticles, 20 µg/mL of [BBR]-loaded nanoparticles lead to a significant reduction, after 1 h of contact, of both planktonic bacteria and yeast. Sessile cells within biofilms were also considered. At 30 and 40 µg/mL, [BBR]-loaded PLGA nanoparticles reduced the viability of the sessile endodontic bacteria, upon 24 h of exposure. The cytotoxicity of BBR-loaded nanoparticles to oral fibroblasts was negligible. The novel berberine-loaded polymeric nanoparticles hold potential as a promising supplementary approach in the treatment of endodontic infections.

8.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928403

RESUMO

Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Humanos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Nanopartículas/química , Animais , Vírion/química , Sistemas de Liberação de Medicamentos/métodos
9.
Nature ; 629(8014): 1165-1173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720076

RESUMO

The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.


Assuntos
Genoma , Salpicos Nucleares , Precursores de RNA , Splicing de RNA , RNA Mensageiro , Spliceossomos , Animais , Humanos , Masculino , Camundongos , Genes , Genoma/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Salpicos Nucleares/genética , Salpicos Nucleares/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica
10.
ACS Appl Mater Interfaces ; 16(20): 25740-25756, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722759

RESUMO

Micro- and nano-plastics (NPs) are found in human milk, blood, tissues, and organs and associate with aberrant health outcomes including inflammation, genotoxicity, developmental disorders, onset of chronic diseases, and autoimmune disorders. Yet, interfacial interactions between plastics and biomolecular systems remain underexplored. Here, we have examined experimentally, in vitro, in vivo, and by computation, the impact of polystyrene (PS) NPs on a host of biomolecular systems and assemblies. Our results reveal that PS NPs essentially abolished the helix-content of the milk protein ß-lactoglobulin (BLG) in a dose-dependent manner. Helix loss is corelated with the near stoichiometric formation of ß-sheet elements in the protein. Structural alterations in BLG are also likely responsible for the nanoparticle-dependent attrition in binding affinity and weaker on-rate constant of retinol, its physiological ligand (compromising its nutritional role). PS NP-driven helix-to-sheet conversion was also observed in the amyloid-forming trajectory of hen egg-white lysozyme (accelerated fibril formation and reduced helical content in fibrils). Caenorhabditis elegans exposed to PS NPs exhibited a decrease in the fluorescence of green fluorescent protein-tagged dopaminergic neurons and locomotory deficits (akin to the neurotoxin paraquat exposure). Finally, in silico analyses revealed that the most favorable PS/BLG docking score and binding energies corresponded to a pose near the hydrophobic ligand binding pocket (calyx) of the protein where the NP fragment was found to make nonpolar contacts with side-chain residues via the hydrophobic effect and van der Waals forces, compromising side chain/retinol contacts. Binding energetics indicate that PS/BLG interactions destabilize the binding of retinol to the protein and can potentially displace retinol from the calyx region of BLG, thereby impairing its biological function. Collectively, the experimental and high-resolution in silico data provide new insights into the mechanism(s) by which PS NPs corrupt the bimolecular structure and function, induce amyloidosis and onset neuronal injury, and drive aberrant physiological and behavioral outcomes.


Assuntos
Caenorhabditis elegans , Lactoglobulinas , Muramidase , Animais , Muramidase/química , Muramidase/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Caenorhabditis elegans/metabolismo , Poliestirenos/química , Nanopartículas/química , Vitamina A/química , Vitamina A/metabolismo , Humanos , Homeostase/efeitos dos fármacos , Plásticos/química
11.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746090

RESUMO

The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive. Given the complexity of pain as a sensory and emotional experience, and the richness of ethological pain-related behaviors, we developed a standardized, deep-learning platform for deconstructing the behavior dynamics associated with the affective component of pain in mice-LUPE (Light aUtomated Pain Evaluator). LUPE removes human bias in behavior quantification and accelerated analysis from weeks to hours, which we leveraged to discover that morphine altered attentional and motivational pain behaviors akin to affective analgesia in humans. Through activity-dependent genetics and single-nuclei RNA sequencing, we identified specific ensembles of nociceptive cingulate neuron-types expressing mu-opioid receptors. Tuning receptor expression in these cells bidirectionally modulated morphine analgesia. Moreover, we employed a synthetic opioid receptor promoter-driven approach for cell-type specific optical and chemical genetic viral therapies to mimic morphine's pain-relieving effects in the cingulate, without reinforcement. This approach offers a novel strategy for precision pain management by targeting a key nociceptive cortical circuit with on-demand, non-addictive, and effective analgesia.

12.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732238

RESUMO

Efficient repair of skeletal muscle relies upon the precise coordination of cells between the satellite cell niche and innate immune cells that are recruited to the site of injury. The expression of pro-inflammatory cytokines and chemokines such as TNFα, IFNγ, CXCL1, and CCL2, by muscle and tissue resident immune cells recruits neutrophils and M1 macrophages to the injury and activates satellite cells. These signal cascades lead to highly integrated temporal and spatial control of muscle repair. Despite the therapeutic potential of these factors for improving tissue regeneration after traumatic and chronic injuries, their transcriptional regulation is not well understood. The transcription factor Mohawk (Mkx) functions as a repressor of myogenic differentiation and regulates fiber type specification. Embryonically, Mkx is expressed in all progenitor cells of the musculoskeletal system and is expressed in human and mouse myeloid lineage cells. An analysis of mice deficient for Mkx revealed a delay in postnatal muscle repair characterized by impaired clearance of necrotic fibers and smaller newly regenerated fibers. Further, there was a delay in the expression of inflammatory signals such as Ccl2, Ifnγ, and Tgfß. This was coupled with impaired recruitment of pro-inflammatory macrophages to the site of muscle damage. These studies demonstrate that Mkx plays a critical role in adult skeletal muscle repair that is mediated through the initial activation of the inflammatory response.


Assuntos
Inflamação , Músculo Esquelético , Animais , Humanos , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Regeneração , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
13.
ACS Omega ; 9(17): 19601-19612, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708259

RESUMO

Incorporation of a polar filler such as silica into a nonpolar rubber matrix is challenging and energy consuming due to their large difference in polarity. Epoxidation of carbon-carbon double bonds in unsaturated rubber, especially for rubber with low unsaturation such as butyl rubber, is an effective method to introduce polar functional groups to the rubber macromolecules for better filler dispersion. Although different epoxidation reagents including hydrogen peroxide (H2O2), peracid, and meta-chloroperoxybenzoic acid (mCPBA) have been previously reported, these reagents have different drawbacks. In this article, a metal-free epoxidation reagent, dimethyl dioxirane (DMDO), generated from acetone and Oxone is explored for efficient epoxidation of rubber with low unsaturation. The effects of the addition manner of the reactant Oxone and buffer sodium bicarbonate (NaHCO3) and reaction temperature on the epoxide formation are studied. Compared to peracid, a faster and more efficient epoxidation without the generation of a ring-opened product is achieved when DMDO is used as the epoxidation reagent. Furthermore, it is found that the epoxidation using DMDO is not sensitive to the water concentration in the rubber solution up to 20 wt %. The addition of quaternary ammonium salt as a phase transfer catalyst not only improves the conversion but also further increases the water tolerance to 25 wt %. The reaction conditions for preparation of epoxidized butyl rubber with different percentages of epoxide group are optimized by Design of Experiments (DoE). At the end, improved dispersion of silica in the matrix of epoxidized butyl rubber is achieved, as revealed by the rubber process analyzer (RPA) and atomic force microscopy (AFM).

14.
Artigo em Inglês | MEDLINE | ID: mdl-38607352

RESUMO

Wound healing of the oral mucosa is an urgent problem in modern dental surgical practice. This research article presents and compares the findings of the investigations of the structural, physicochemical, and biological characteristics of two types of polymeric membranes used for the regeneration of oral mucosa. The membranes were prepared from poly(tetrafluoroethylene) (PTFE) and a copolymer of vinylidene fluoride and tetrafluoroethylene (VDF-TeFE) and analyzed via scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. Investigation results obtained indicate that both types of membranes are composed of thin fibers: (0.57 ± 0.25) µm for PTFE membranes and (0.43 ± 0.14) µm for VDF-TeFE membranes. Moreover, the fibers of VDF-TeFE membranes exhibit distinct piezoelectric properties, which are confirmed by piezoresponse force microscopy and X-ray diffraction. Both types of membranes are hydrophobic: (139.7 ± 2.5)° for PTFE membranes and (133.5 ± 2.0)° for VDF-TeFE membranes. In vitro assays verify that both membrane types did not affect the growth and division of mice fibroblasts of the 3T3-L1 cell line, with a cell viability in the range of 88-101%. Finally, in vivo comparative experiments carried out using Wistar rats demonstrate that the piezoelectric VDF-TeFE membranes have a high ability to regenerate oral mucosa.

15.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562896

RESUMO

Cues in the environment become predictors of biologically relevant stimuli, such as food, through associative learning. These cues can not only act as predictors but can also be attributed with incentive motivational value and gain control over behavior. When a cue is imbued with incentive salience, it attains the ability to elicit maladaptive behaviors characteristic of psychopathology. We can capture the propensity to attribute incentive salience to a reward cue in rats using a Pavlovian conditioned approach paradigm, in which the presentation of a discrete lever-cue is followed by the delivery of a food reward. Upon learning the cue-reward relationship, some rats, termed sign-trackers, develop a conditioned response directed towards the lever-cue; whereas others, termed goal-trackers, approach the food cup upon lever-cue presentation. Here, we assessed the effects of systemic corticosterone (CORT) on the acquisition and expression of sign- and goal-tracking behaviors in male and female rats, while examining the role of the vendor (Charles River or Taconic) from which the rats originated in these effects. Male and female rats from Charles River had a greater tendency to sign-track than those from Taconic. Administration of CORT enhanced the acquisition of sign-tracking behavior in males from Charles River and females from both vendors. Conversely, administration of CORT had no effect on the expression of the conditioned response. These findings demonstrate a role for CORT in cue-reward learning and suggest that inherent tendencies towards sign- or goal-tracking may interact with this physiological mediator of motivated behavior. Highlights: Male and female rats from Charles River exhibit more sign-tracking relative to those from Taconic.Corticosterone increases the acquisition of sign-tracking in male rats from Charles River.Corticosterone increases the acquisition of sign-tracking in female rats, regardless of vendor.There is no effect of corticosterone on the expression of sign-tracking behavior in either male or female rats.

16.
Sci Total Environ ; 927: 172235, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582125

RESUMO

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.


Assuntos
Monitoramento Ambiental , Peixes , Cadeia Alimentar , Microplásticos , Poluentes Químicos da Água , Animais , Peixes/fisiologia , Poluentes Químicos da Água/análise , Conteúdo Gastrointestinal/química , Plásticos/análise , Ecossistema
17.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673736

RESUMO

Abundant in citrus fruits, naringin (NAR) is a flavonoid that has a wide spectrum of beneficial health effects, including its anti-inflammatory activity. However, its use in the clinic is limited due to extensive phase I and II first-pass metabolism, which limits its bioavailability. Thus, lipid nanoparticles (LNPs) were used to protect and concentrate NAR in inflamed issues, to enhance its anti-inflammatory effects. To target LNPs to the CD44 receptor, overexpressed in activated macrophages, functionalization with hyaluronic acid (HA) was performed. The formulation with NAR and HA on the surface (NAR@NPsHA) has a size below 200 nm, a polydispersity around 0.245, a loading capacity of nearly 10%, and a zeta potential of about 10 mV. In vitro studies show the controlled release of NAR along the gastrointestinal tract, high cytocompatibility (L929 and THP-1 cell lines), and low hemolytic activity. It was also shown that the developed LNPs can regulate inflammatory mediators. In fact, NAR@NPsHA were able to decrease TNF-α and CCL-3 markers expression by 80 and 90% and manage to inhibit the effects of LPS by around 66% for IL-1ß and around 45% for IL-6. Overall, the developed LNPs may represent an efficient drug delivery system with an enhanced anti-inflammatory effect.


Assuntos
Anti-Inflamatórios , Flavanonas , Lipossomos , Nanopartículas , Flavanonas/farmacologia , Flavanonas/química , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Nanopartículas/química , Animais , Células THP-1 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Linhagem Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptores de Hialuronatos/metabolismo , Composição de Medicamentos
18.
Methods Mol Biol ; 2787: 39-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656480

RESUMO

The study of natural variations in photosynthesis in the Brassicaceae family offers the possibility of identifying mechanisms to enhance photosynthetic efficiency in crop plants. Indeed, this family, and particularly its tribe Brassiceae, has been shown to harbor species that have a higher-than-expected photosynthetic efficiency, possibly as a result of a complex evolutionary history. Over the past two decades, methods have been developed to measure photosynthetic efficiency based on chlorophyll fluorescence. Chlorophyll fluorescence measurements are performed with special cameras, such as the FluorCams, which can be included in robotic systems to create high-throughput phenotyping platforms. While these platforms have so far demonstrated high efficiency in measuring small model species like Arabidopsis thaliana, they have the drawback of limited adaptability to accommodate different plant sizes. As a result, the range of species that can be analyzed is restricted. This chapter presents our approach to analyze the photosynthetic parameters: ϕPSII and Fv/Fm for a panel of Brassicaceae species, including a high-photosynthesis species, Hirschfeldia incana, and the adaptations to the phenotyping platform that are required to accommodate this varied group of plants.


Assuntos
Brassicaceae , Clorofila , Fotossíntese , Brassicaceae/fisiologia , Brassicaceae/metabolismo , Brassicaceae/genética , Clorofila/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Fluorescência
19.
Am J Surg Pathol ; 48(6): e43-e64, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451836

RESUMO

Breast implant-associated anaplastic large cell lymphoma has been recognized as a distinct entity in the World Health Organization classification of hematolymphoid neoplasms. These neoplasms are causally related to textured implants that were used worldwide until recently. Consequently, there is an increased demand for processing periprosthetic capsules, adding new challenges for surgeons, clinicians, and pathologists. In the literature, the focus has been on breast implant-associated anaplastic large cell lymphoma; however, benign complications related to the placement of breast implants occur in up to 20% to 30% of patients. Imaging studies are helpful in assessing patients with breast implants for evidence of implant rupture, changes in tissues surrounding the implants, or regional lymphadenopathy related to breast implants, but pathologic examination is often required. In this review, we couple our experience with a review of the literature to describe a range of benign lesions associated with breast implants that can be associated with different clinical presentations or pathogenesis and that may require different diagnostic approaches. We illustrate the spectrum of the most common of these benign disorders, highlighting their clinical, imaging, gross, and microscopic features. Finally, we propose a systematic approach for the diagnosis and handling of breast implant specimens in general.


Assuntos
Implante Mamário , Implantes de Mama , Linfoma Anaplásico de Células Grandes , Humanos , Implantes de Mama/efeitos adversos , Feminino , Linfoma Anaplásico de Células Grandes/patologia , Linfoma Anaplásico de Células Grandes/etiologia , Implante Mamário/efeitos adversos , Implante Mamário/instrumentação , Valor Preditivo dos Testes , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Relevância Clínica
20.
J Tissue Eng ; 15: 20417314241235527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516227

RESUMO

In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA