Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 2): 126795, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37689304

RESUMO

Dicranopteris linearis (DL) is a fern in the Gleicheniaceae family, locally known as resam by the Malay community. It has numerous pharmacological benefits, with antiulcer and gastroprotective properties. Peptic ulcer is a chronic and recurring disease that significantly impacts morbidity and mortality, affecting nearly 20 % of the world's population. Despite the effectiveness of peptic ulcer drugs, there is no perfect treatment for the ailment. Encapsulation is an advanced technique that can treat peptic ulcers by incorporating natural sources. This work aims to encapsulate DL extract using different types of cellulose particles by the solvent displacement technique for peptic ulcer medication. The extract was encapsulated using methyl cellulose (MC), ethyl cellulose (EC), and a blend of ethyl methyl cellulose through a dialysis cellulose membrane tube and freeze-dried to yield a suspension of the encapsulated DL extracts. The microencapsulated methyl cellulose chloroform extract (MCCH) has a considerably greater level of total phenolic (84.53 ± 6.44 mg GAE/g), total flavonoid (84.53 ± 0.54 mg GAE/g), and antioxidant activity (86.40 ± 0.63 %). MCCH has the highest percentage of antimicrobial activity against Escherichia coli (2.42 ± 107 × 0.70 CFU/mL), Bacillus subtilis (5.21 ± 107 × 0.90 CFU/mL), and Shigella flexneri (1.25 ± 107 × 0.66 CFU/mL), as well as the highest urease inhibitory activity (50.0 ± 0.21 %). The MCCH particle size was estimated to be 3.347 ± 0.078 µm in diameter. It has been proven that DL elements were successfully encapsulated in the methyl cellulose polymer in the presence of calcium (Ca). Fourier transform infrared (FTIR) analysis indicated significant results, where the peak belonging to the CO stretch of the carbonyl groups of methyl cellulose (MC) shifted from 1638.46 cm-1 in the spectrum of pure MC to 1639.10 cm-1 in the spectrum of the MCCH extract. The shift in the wavenumbers was due to the interactions between the phytochemicals in the chloroform extract and the MC matrix in the microcapsules. Dissolution studies in simulated gastric fluid (SGF) and model fitting of encapsulated chloroform extracts showed that MCCH has the highest EC50 of 6.73 ± 0.27 mg/mL with R2 = 0.971 fitted by the Korsmeyer-Peppas model, indicating diffusion as the mechanism of release.


Assuntos
Antiulcerosos , Úlcera Péptica , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Clorofórmio , Diálise Renal , Antiulcerosos/farmacologia , Antiulcerosos/química , Celulose/química , Metilcelulose
2.
Artigo em Inglês | MEDLINE | ID: mdl-36704214

RESUMO

Plants are the primary source of the food chain and are rich in nutrients and biochemical compounds that mainly give beneficial effects to humans as well as other living organisms. Curcuma caesia Roxb. is a family member of Zingiberaceae commonly known as black turmeric. The leaves and rhizomes of this plant are extensively used in Ayurvedic medicine and as traditional remedies for various ailments. The aromatic rhizomes and leaves are due to the presence of essential oils reported as camphor, ar-turmerone, (Z)-ß-ocimene, ar-curcumene, 1,8-cineole, ß-elemene, borneol, bornyl acetate, tropolone, ledol, ß-elemenone, and α-bulnesene. Previous research studies have revealed most of the biological activities of C. caesia, such as antioxidant, antimicrobial, and anti-inflammatory properties, which are due to the presence of various bioactive components. The diverse chemical composition contained in this plant contributes to various biological activities, which may be beneficial for the health, food, and cosmetic industries. The purpose of this review was to summarise updated research on the in vitro and in vivo activities of C. caesia as well as the current clinical investigations. A compilation of the latest findings regarding the potential activities of C. caesia and mechanisms related to its health benefits is discussed and reviewed. This valuable information is the key that can be used for the development of drugs, functional food ingredients, and food products.

3.
Foods ; 11(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954003

RESUMO

Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.

4.
J Sci Food Agric ; 99(6): 2665-2676, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30426501

RESUMO

White pepper is the dried seeds obtained from pepper berries (Piper nigrum L.) after the removal of the pericarp. It has been widely used as seasoning and condiments in food preparation. Globally, white pepper fetches a higher price compared to black pepper due to its lighter colour, preferable milder flavour and pungency. Increasing global demand of the spice outpaced the supply as the conventional production method used is laborious, lengthy and also not very hygienic. The most common conventional method is water retting but can also include pit soil, chemical, boiling, steaming and mechanical methods. The introduction of a biotechnological approach has gained a lot of interest, as it is a more rapid, convenient and hygienic method of producing white pepper. This technique involves the application of microorganisms and/or enzymes. This review highlights both conventional and latest biotechnological processes of white pepper production. © 2018 Society of Chemical Industry.


Assuntos
Biotecnologia , Tecnologia de Alimentos , Frutas , Piper nigrum , Especiarias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA