Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Phys Chem Lett ; 11(5): 1609-1613, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037823

RESUMO

Inspired by the unique properties of graphene, research efforts have broadened to investigations of various other two-dimensional materials with the aim of exploring their properties for future applications. Our combined experimental and theoretical study confirms the existence of a binary honeycomb structure formed by Ag and Te on Ag(111). Low-energy electron diffraction shows sharp spots which provide evidence of an undistorted AgTe layer. Band structure data obtained by angle-resolved photoelectron spectroscopy are closely reproduced by first-principles calculations, using density functional theory (DFT). This confirms the formation of a honeycomb structure with one Ag and one Te atom in the unit cell. In addition, the theoretical band structure reproduces also the finer details of the experimental bands, such as a split of one of the AgTe bands.

3.
Phys Rev Lett ; 109(5): 057601, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006207

RESUMO

The existence of a highly ordered, two-dimensional, Sn/Ag alloy on Si(111) is reported in this study. We present detailed atomic and electronic structures of the one atomic layer thick alloy, exhibiting a 2 × 2 periodicity. The electronic structure is metallic due to a free-electron-like surface band dispersing across the Fermi level. By electron doping, the electronic structure can be converted into a semiconducting state. A rotated Sn trimer constitutes the key structural element that could be identified by a detailed analysis of constant energy contours derived from the free-electron-like band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA