RESUMO
Stem cell spheroids are rapidly becoming essential tools for a diverse array of applications ranging from tissue engineering to 3D cell models and fundamental biology. Given the increasing prominence of biotechnology, there is a pressing need to develop more accessible, efficient, and reproducible methods for producing these models. Various techniques such as hanging drop, rotating wall vessel, magnetic levitation, or microfluidics have been employed to generate spheroids. However, none of these methods facilitate the easy and efficient production of a large number of spheroids using a standard 6-well plate. Here, we present a novel method based on pellet culture (utilizing U-shaped microstructures) using a silicon mold produced through 3D printing, along with a detailed and illustrated manufacturing protocol. This technique enables the rapid production of reproducible and controlled spheroids (for 1× 106 cells, spheroids = 130 ± 10 µm) from human induced pluripotent stem cells (hIPSCs) within a short time frame (24 h). Importantly, the method allows the production of large quantities (2 × 104 spheroids for 1 × 106 cells) in an accessible and cost-effective manner, thanks to the use of a reusable mold. The protocols outlined herein are easily implementable, and all the necessary files for the method replication are freely available. Key features ⢠Provision of 3D mold files (STL) to produce silicone induction device of spheroids using 3D printing. ⢠Cost-effective, reusable, and autoclavable device capable of generating up to 1.2 × 104 spheroids of tunable diameters in a 6-well plate. ⢠Spheroids induction with multiple hIPSC cell lines. ⢠Robust and reproducible production method suitable for routine laboratory use.
RESUMO
Organophosphorus compounds (OPs), such as VX, pose a significant threat due to their neurotoxic and hazardous properties. Skin decontamination is essential to avoid irreversible effects. Fuller's earth (FE), a phyllosilicate conventionally employed in powder form, has demonstrated decontamination capacity against OPs. The aim of this study was to develop a formulation that forms a film on the skin, with a significant OP removal capacity (>95 %) coupled with sequestration capabilities, favorable drying time and mechanical properties to allow for easy application and removal, particularly in emergency context. Various formulations were prepared using different concentrations of polyvinyl alcohol (PVA), FE and surfactants. Their removal and sequestration capacity was tested using paraoxon-ethyl (POX), a chemical that simulates the behavior of VX. Formulations with removal capacity levels surpassing 95 % were mechanically characterized and cell viability assays were performed on Normal Human Dermal Fibroblast (NHDF). The four most promising formulations were used to assess decontamination efficacy on pig ear skin explants. These formulations showed decontamination levels ranging from 84.4 ± 4.7 % to 96.5 ± 1.3 %, which is equivalent to current decontamination methods. These results suggest that this technology could be a novel and effective tool for skin decontamination following exposure to OPs.
Assuntos
Descontaminação , Paraoxon , Pele , Descontaminação/métodos , Animais , Pele/efeitos dos fármacos , Humanos , Suínos , Paraoxon/toxicidade , Paraoxon/química , Compostos de Alumínio/química , Sobrevivência Celular/efeitos dos fármacos , Silicatos/química , Álcool de Polivinil/química , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Tensoativos/química , Fibroblastos/efeitos dos fármacosRESUMO
Stem cells, particularly human iPSCs, constitute a powerful tool for tissue engineering, notably through spheroid and organoid models. While the sensitivity of stem cells to the viscoelastic properties of their direct microenvironment is well-described, stem cell differentiation still relies on biochemical factors. Our aim is to investigate the role of the viscoelastic properties of hiPSC spheroids' direct environment on their fate. To ensure that cell growth is driven only by mechanical interaction, bioprintable alginate-gelatin hydrogels with significantly different viscoelastic properties were utilized in differentiation factor-free culture medium. Alginate-gelatin hydrogels of varying concentrations were developed to provide 3D environments of significantly different mechanical properties, ranging from 1 to 100 kPa, while allowing printability. hiPSC spheroids from two different cell lines were prepared by aggregation (â = 100 µm, n > 1 × 104), included and cultured in the different hydrogels for 14 days. While spheroids within dense hydrogels exhibited limited growth, irrespective of formulation, porous hydrogels prepared with a liquid-liquid emulsion method displayed significant variations of spheroid morphology and growth as a function of hydrogel mechanical properties. Transversal culture (adjacent spheroids-laden alginate-gelatin hydrogels) clearly confirmed the separate effect of each hydrogel environment on hiPSC spheroid behavior. This study is the first to demonstrate that a mechanically modulated microenvironment induces diverse hiPSC spheroid behavior without the influence of other factors. It allows one to envision the combination of multiple formulations to create a complex object, where the fate of hiPSCs will be independently controlled by their direct microenvironment.
RESUMO
Human vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings. Despite their importance, the relationships between the microstructure of vocal folds and their resulting macroscopic properties remain poorly understood. There is a need for versatile models that encompass their structural complexity while mimicking their mechanical features. In this study, we present a candidate model inspired by histological measurements of the upper layers of human vocal folds. Bi-photonic observations were used to quantify the distribution, orientation, width, and volume fraction of collagen and elastin fibers between histological layers. Using established biomaterials, polymer fiber-reinforced hydrogels were developed to replicate the fibrillar network and ground substance of native vocal fold tissue. To achieve this, jet-sprayed poly(ε-caprolactone) fibrillar mats were successfully impregnated with poly(L-lysine) dendrimers/polyethylene glycol hydrogels. The resulting composites exhibited versatile structural, physical and mechanical properties that could be customized through variations in the chemical formulation of their hydrogel matrix, the microstructural architecture of their fibrous networks (i.e., fiber diameter, orientation and volume fraction) and their assembly process. By mimicking the collagen network of the lamina propria with polymer fibers and the elastin/ground substance with the hydrogel composition, we successfully replicated the non-linear, anisotropic, and viscoelastic mechanical behavior of the vocal-fold upper layers, accounting for inter/intra-individual variations. The development of this mimetic model offers promising avenues for a better understanding of the complex mechanisms involved in voice production. STATEMENT OF SIGNIFICANCE: Human vocal folds are outstanding vibrating soft living tissues allowing phonation. Simple physical models that take into account the histological structure of the vocal fold and recapitulate its mechanical features are scarce. As a result, the relations between tissue components, organisation and vibro-mechanical performances still remain an open question. We describe here the development and the characterization of fiber-reinforced hydrogels inspired from the vocal-fold microstructure. These systems are able to reproduce the mechanics of vocal-fold tissues upon realistic cyclic and large strains under various multi-axial loadings, thus providing a mimetic model to further understand the impact of the fibrous network microstructure in phonation.
Assuntos
Elastina , Prega Vocal , Humanos , Prega Vocal/patologia , Hidrogéis/química , Colágeno , Matriz Extracelular , Materiais BiocompatíveisRESUMO
Resorbable hydrogels are widely used as scaffolds for tissue engineering. These hydrogels can be modified by grafting dendrimer-linked functionalized molecules (dendrigrafts). Our aim was to develop a tunable poly(L-lysine) dendrigrafts (DGL)/PEG-based hydrogel with an inverse porosity and to investigate its osteogenic potential. DGL/PEG hydrogels were emulsified in a surfactant-containing oil solution to form microspheres. The toxicity was evaluated on Human Vascular Endothelial Cells (HUVECs) and Bone Marrow Mesenchymal Stem Cells (hMSCs) with Live/Dead and MTT assays. The effects on HUVECs were investigated through C5 Complement expression by RT-PCR and C5a/TGF-ß1 secretion by ELISA. Recruitment of hMSCs was investigated using Boyden chambers and their osteogenic differentiation was studied by measuring Alkaline Phosphatase activity (ALP) and BMP-2 secretion by ELISA. Adjusting the stirring speed during the emulsification allowed to obtain spherical microspheres with tunable diameters (10-1600 µm). The cell viability rate with the hydrogel was 95 and 100% with HUVECs and hMSCs, respectively. Incubating HUVECs with the biomaterial induced a 5-fold increase in TGF-ß1 and a 3-fold increase in Complement C5a release. Furthermore, HUVEC supernatants obtained after incubation with the hydrogel induced a 2.5-fold increase in hMSC recruitment. The hydrogel induced a 3-fold increase both in hMSC ALP activity and BMP-2 secretion. Overall, the functionalized hydrogel enhanced the osteogenic potential by interacting with endothelial cells and hMSCs and represents a promising tool for bone tissue engineering.
RESUMO
Injectable hydrogels that polymerize directly in vivo hold significant promises in clinical settings to support the repair of damaged or failing tissues. Existing systems that allow cellular and tissue ingrowth after injection are limited because of deficient porosity and lack of oxygen and nutrient diffusion inside the hydrogels. Here is reported for the first time an in vivo injectable hydrogel in which the porosity does not pre-exist but is formed concomitantly with its in situ injection by a controlled effervescent reaction. The hydrogel tailorable crosslinking, through the reaction of polyethylene glycol with lysine dendrimers, allows the mixing and injection of precursor solutions from a dual-chamber syringe while entrapping effervescently generated CO2 bubbles to form highly interconnected porous networks. The resulting structures allow preserving modular mechanical properties (from 12.7 ± 0.9 to 29.9 ± 1.7 kPa) while being cytocompatible and conducive to swift cellular attachment, proliferation, in-depth infiltration and extracellular matrix deposition. Most importantly, the subcutaneously injected porous hydrogels are biocompatible, undergo tissue remodeling and support extensive neovascularisation, which is of significant advantage for the clinical repair of damaged tissues. Thus, the porosity and injectability of the described effervescent hydrogels, together with their biocompatibility and versatility of mechanical properties, open broad perspectives for various regenerative medicine or material applications, since effervescence could be combined with a variety of other systems of swift crosslinking. STATEMENT OF SIGNIFICANCE: A major challenge in hydrogel design is the synthesis of injectable formulations allowing easy handling and dispensing in the site of interest. However, the lack of adequate porosity inside hydrogels prevent cellular entry and, therefore, vascularization and tissue ingrowth, limiting the regenerative potential of a vast majority of injectable hydrogels. We describe here the development of an acellular hydrogel that can be injected directly in situ while allowing the simultaneous formation of porosity. Such hydrogel would facilitate handling through injection while providing a porous structure supporting vascularization and tissue ingrowth.
Assuntos
Hidrogéis , Medicina Regenerativa , Materiais Biocompatíveis/química , Matriz Extracelular/química , Hidrogéis/química , Hidrogéis/farmacologia , Porosidade , Engenharia Tecidual/métodosRESUMO
Fuller's earth (FE) is a phyllosilicate used as a powder for household or skin decontamination due to its adsorbent properties. Recent studies have shown that water suspensions exhibit similar adsorbent capacities. FE is heterogeneous due to its composition of elementary clay aggregates and heavy metal particles. Here, FE toxicity was assessed in vitro on skin cells and in vivo on Danio rerio embryos. Among the suspensions tested (5%, 9.1% and 15% w/w), only the highest one shows weak toxicity. Suspensions were tested for ex vivo dermal decontamination into pig ear skin and human abdominal skin using diffusion cells and paraoxon as organophosphorus contaminant. After 24 h of diffusion, no difference was observed in the paraoxon concentration in the receptor compartment whether the decontamination was carried out with FE in powder or in suspension form. In presence of FE suspensions, we observed the disappearance of paraoxon from the stratum corneum, the reservoir compartment, independently of the suspensions' concentration. We suggest that water potentiates the absorbing capacities of FE powder by intercalating between clay lamellas leading to the appearance of new adsorption zones and swelling. These data support the use of FE aqueous suspensions as a safe tool for organophosphorus skin decontamination.
Assuntos
Descontaminação , Paraoxon , Adsorção , Compostos de Alumínio , Animais , Compostos de Magnésio , Paraoxon/toxicidade , Silicatos , Pele , Suspensões , Suínos , ÁguaRESUMO
Poly(ethylene glycol) (PEG) hydrogels have been extensively used as scaffolds for tissue engineering applications, owing to their biocompatibility, chemical versatility, and tunable mechanical properties. However, their bio-inert properties require them to be associated with additional functional moieties to interact with cells. To circumvent this need, we propose here to reticulate PEG molecules with poly(L-lysine) dendrigrafts (DGL) to provide intrinsic cell functionalities to PEG-based hydrogels. The physico-chemical characteristics of the resulting hydrogels were studied in regard of the concentration of each component. With increasing amounts of DGL, the cross-linking time and swelling ratio could be decreased, conversely to mechanical properties, which could be tailored from 7.7 ± 0.7 to 90 ± 28.8 kPa. Furthermore, fibroblasts adhesion, viability, and morphology on hydrogels were then assessed. While cell adhesion significantly increased with the concentration of DGL, cell viability was dependant of the ratio of DGL and PEG. Cell morphology and proliferation; however, appeared mainly related to the overall hydrogel rigidity. To allow cell infiltration and cell growth in 3D, the hydrogels were rendered porous. The biocompatibility of resulting hydrogels of different compositions and porosities was evaluated by 3 week subcutaneous implantations in mice. Hydrogels allowed an extensive cellular infiltration with a mild foreign body reaction, histological evidence of hydrogel degradation, and neovascularization.
Assuntos
Materiais Biocompatíveis/química , Polietilenoglicóis/química , Polilisina/química , Alicerces Teciduais , Animais , Materiais Biocompatíveis/efeitos adversos , Adesão Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas , Reação a Corpo Estranho , Humanos , Hidrogéis , Fenômenos Mecânicos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Polietilenoglicóis/efeitos adversos , Polilisina/efeitos adversos , Porosidade , Alicerces Teciduais/efeitos adversosRESUMO
In the field of bone regenerative medicine, injectable calcium phosphate cements (CPCs) are used for decades in clinics, as bone void fillers. Most often preformed polymers (e.g., hyaluronic acid, collagen, chitosan, cellulose ethers ) are introduced in the CPC formulation to make it injectable and improve its cohesion. Once the cement has hardened, the polymer is simply trapped in the CPC structure and no organic subnetwork is present. By contrast, in this work a CPC was combined with organic monomers that reticulated in situ so that a continuous biocompatible 3D polymeric subnetwork was formed in the CPC microstructure, resulting in a higher permeability of the CPC, which might allow to accelerate its in vivo degradation. Two options were investigated depending on whether the polymer was formed before the apatitic inorganic network or concomitantly. In the former case, conditions were found to reach a suitable rheology for easy injection of the composite. In addition, the in situ formed polymer was shown to strongly affect the size, density, and arrangement of the apatite crystals formed during the setting reaction, thereby offering an original route to modulate the microstructure and porosity of apatitic cements.
Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Substitutos Ósseos/química , Hidrogéis/química , Regeneração Óssea , Osso e Ossos , Força Compressiva , Humanos , Injeções , Teste de Materiais , PorosidadeRESUMO
Top-down tissue engineering aims to produce functional tissues using biomaterials as scaffolds, thus providing cues for cell proliferation and differentiation. Conversely, the bottom-up approach aims to precondition cells to form modular tissues units (building-blocks) represented by spheroids. In spheroid culture, adult stem cells are responsible for their extracellular matrix synthesis, re-creating structures at the tissue level. Spheroids from adult stem cells can be considered as organoids, since stem cells recapitulate differentiation pathways and also represent a promising approach for identifying new molecular targets (biomarkers) for diagnosis and therapy. Currently, spheroids can be used for scaffold-free (developmental engineering) or scaffold-based approaches. The scaffold promotes better spatial organization of individual spheroids and provides a defined geometry for their 3D assembly in larger and complex tissues. Furthermore, spheroids exhibit potent angiogenic and vasculogenic capacity and serve as efficient vascularization units in porous scaffolds for bone tissue engineering. An automated combinatorial approach that integrates spheroids into scaffolds is starting to be investigated for macro-scale tissue biofabrication.
Assuntos
Células-Tronco Adultas/citologia , Osso e Ossos/citologia , Cartilagem/citologia , Esferoides Celulares/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células-Tronco Adultas/fisiologia , Animais , Proliferação de Células , Humanos , Nanofibras/química , Esferoides Celulares/fisiologiaRESUMO
The continuous presence of TGF-ß is critically important to induce effective chondrogenesis. To investigate chondrogenesis in a cartilage defect, we tested the hypothesis that the implantation of TGF-ß1-releasing scaffolds improves very early cartilage repair in vivo. Spatiotemporal controlled release of TGF-ß1 was achieved from multiblock scaffolds that were implanted in osteochondral defects in the medial femoral condyles of adult minipigs. We observed a sustained presence of TGF-ß1 at 4 wk in vivo, which significantly promoted structural aspects of early overall cartilage repair, especially cellularity, cellular morphology, and safranin O staining intensity. Furthermore, early aggrecan and type II collagen production were both increased in specific topographic patterns in cartilaginous repair tissue. Sustained release of TGF-ß1 also increased cell numbers and proliferation, staining intensities for the stem cell surface marker, CD105, and number of stromal cell-derived factor-1 (SDF-1) -positive cells within cartilaginous repair tissue. These data identify a mechanism by which TGF-ß1 modulates early chondrogenesis by primarily increasing the number of progenitor cells arising from the subchondral bone marrow compartment via the SDF-1/chemokine (CXC motif) receptor 4 pathway, their proliferation, differentiation, and extracellular matrix deposition in specific topographic patterns, highlighting the pivotal role played by TGF-ß1 during this crucial phase.-Asen, A.-K., Goebel, L., Rey-Rico, A., Sohier, J., Zurakowski, D., Cucchiarini, M., Madry, H. Sustained spatiotemporal release of TGF-ß1 confers enhanced very early chondrogenic differentiation during osteochondral repair in specific topographic patterns.
Assuntos
Cartilagem , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Fator de Crescimento Transformador beta , Animais , Cartilagem/lesões , Cartilagem/metabolismo , Cartilagem/fisiologia , Quimiocina CXCL12/metabolismo , Implantes de Medicamento , Endoglina/metabolismo , Receptores CXCR4/metabolismo , Suínos , Porco Miniatura , Fator de Crescimento Transformador beta/farmacocinética , Fator de Crescimento Transformador beta/farmacologiaRESUMO
The ability of cells to secrete extracellular matrix proteins is an important property in the repair, replacement, and regeneration of living tissue. Cells that populate tissue-engineered constructs need to be able to emulate these functions. The motifs, KTTKS or palmitoyl-KTTKS (peptide amphiphile), have been shown to stimulate production of collagen and fibronectin in differentiated cells. Molecular modeling was used to design different forms of active peptide motifs to enhance the efficacy of peptides to increase collagen and fibronectin production using terminals KTTKS/SKTTK/SKTTKS connected by various hydrophobic linkers, V4A3/V4A2/A4G3. Molecular dynamic simulations showed SKTTKS-V4A3-SKTTKS (P3), with palindromic (SKTTKS) motifs and SKTTK-V4A2-KTTKS (P5), maintained structural integrity and favorable surface electrostatic distributions that are required for functionality. In vitro studies showed that peptides, P3 and P5, showed low toxicity to human adipose-derived stem cells (hADSCs) and significantly increased the production of collagen and fibronectin in a concentration-dependent manner compared with the original active peptide motif. The 4-day treatment showed that stem cell markers of hADSCs remained stable with P3. The molecular design of novel peptides is a promising strategy for the development of intelligent biomaterials to guide stem cell function for tissue engineering applications.
Assuntos
Matriz Extracelular/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Células Cultivadas , Colágeno/química , Fibronectinas/química , Citometria de Fluxo , Humanos , PeptídeosRESUMO
In view of preparing antibiotic-loaded structures that can be used as dressing to prevent or contain wound infections, this study evaluates biodegradable nanofibrillar matrices obtained by jet-spraying and containing ciprofloxacin (CIF). The matrices were prepared from different blends of poly-(ε-caprolactone) (PCL) and poly-d,l-(lactic acid) (PDLLA) in view of controlling mechanical properties, biodegradation and antibiotic release rate. The effect of CIF incorporation was assessed in regard of matrices fiber diameter, mechanical properties and degradation while antibiotic release from the polymer blends of different PCL/PDLLA ratios was measured in buffers of different pH to better mimic the wound context. Finally, antibiotic activity of the nanofibrillar matrices and their ability to be colonized by skin cells were evaluated. Non-woven nanofibrillar matrices could be obtained from various polymer blends by jet-spraying and CIF crystals incorporation was easily obtained. The crystals were dispersed in the fibers, without complete embedding. Antibiotic incorporation resulted in a slight increase of fiber diameter and did not modified the mechanical properties of the various matrices composed of different polymer blends. Unlike fiber diameter, degradation and mechanical properties of the fibrillar matrices, CIF release profiles were not controlled by the polymer blend ratios. However, sustained release was observed over more than 23days. Due to the antibiotic pH-dependent solubility, burst release was more prominent in acidic conditions, which mimic the pH of undamaged skin. Finally the incorporated antibiotic was efficient in inhibiting bacterial growth of E. coli and B. subtilis whereas human fibroblasts were able to colonize the CIF-loaded matrices.
Assuntos
Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanofibras/administração & dosagem , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciprofloxacina/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fibroblastos/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/administração & dosagem , Poliésteres/química , Resistência à Tração , Cicatrização/efeitos dos fármacosRESUMO
To develop bioactive scaffolds of targeted properties for tissue repair or biomedical applications, hybrid microfiber-nanoparticle (MF-NP) matrices capable of controlled nanoparticle (NP) delivery were prepared through two novel approaches. In a first strategy, the suppleness of the jet-spraying method to produce polymer microfibers (MF) was used to deposit poly(d,l-lactide) (PLA) NP on poly(lactic-co-glycolic acid) (PLGA) MF by direct co-projection. The second approach relied on the post-incubation of PLA NP aqueous dispersion with MF preliminarily prepared by jet-spraying. NP coverage density onto MF and NP release was assessed by scanning electron microscopy and fluorescence measurements using coumarin-6 loaded NP. The first process was shown to allow high coverage density of NP onto MF (300 µg/mg MF) and strong association, with no NP release observed over time. In the second approach, direct incubation of PLA NP with PLA MF led to lower NP coverage density (40 µg/mg MF) with very fast release of NP from MF. The pre-coating of MF with poly-l-lysine (PLL) or the one of NP with lysozyme as a model protein drug afforded a higher coverage density and stronger association, coupled with a more sustained release of NP from MF over time. These results show the possibility to control the immobilization density and release of NP through appropriate preparation process and surface modification, and are of prime interest for the development of complex scaffolds with orchestrated bioactivity.
Assuntos
Preparações de Ação Retardada/química , Ácido Láctico/química , Microfibrilas/química , Nanopartículas/química , Poliésteres/química , Ácido Poliglicólico/química , Adsorção , Cumarínicos/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Muramidase/administração & dosagem , Muramidase/química , Muramidase/farmacocinética , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Tiazóis/químicaRESUMO
Controlled release of TGF-ß1 from scaffolds is an attractive mechanism to modulate the chondrogenesis of human bone marrow mesenchymal stem cells (hBMSCs) that repopulate articular cartilage defects. Here, we evaluated the ability of porous scaffolds composed of poly(ethylene oxide)-terephtalate and poly(butylene terepthalate) (PEOT/PBT) to release bioactive TGF-ß1 for chondrogenesis of hBMSCs in a pellet culture model. Chondroinduction was compared with that promoted by direct addition of the recombinant factor to the culture medium. The data show a controlled release of TGF-ß1 from scaffolds for at least 21 days in vitro, with â¼10% of TGF-ß1 released during this period. The delivered TGF-ß1 was bioactive, as confirmed by successful chondrogenic differentiation of hBMSCs monitored by morphological, histological, immunohistochemical, biochemical, and real-time reverse transcription polymerase chain reaction analyses. Third, semiquantitative histological evaluations revealed a similar pattern of chondrogenesis compared with the positive controls. Importantly, TGF-ß1-loaded scaffolds allowed for a â¼700-fold upregulation of type-II collagen mRNA compared to when pellets were maintained in the presence of the soluble TGF-ß1, reflected also in the highest score of immunoreactivity to type-II collagen, not significantly different from the positive controls. Likewise, aggrecan mRNA was â¼200-fold upregulated. Interestingly, most (>94%) of the glycosaminoglycan produced remaining associated with the pellets. Analysis of hypertrophic events showed no significant difference in the average total hypertrophy score compared with the positive controls. These results demonstrate the suitability of controlled TGF-ß1 release from biocompatible scaffolds to promote hBMSC chondrogenesis at a physical distance and in the absence of soluble TGF-ß1.
Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Polietilenoglicóis/química , Alicerces Teciduais , Fator de Crescimento Transformador beta1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Cells environment is increasingly recognized as an important function regulator through cell-matrix interactions. Extracellular matrix (ECM) anisotropy being a key component of heart valves properties, we have devised a method to create highly porous anisotropic nanofibrillar scaffolds and studied their suitability as cell-support and interactions with human adipose derived stem cells (hADSCs) and human valve interstitial cells (hVICs). Anisotropic nanofibrillar scaffolds were produced by a modified jet-spraying method that allows the formation of aligned nanofibres (600 nm) through air-stream diffraction of a polymer solution (poly (ε-caprolactone, PCL) and collection onto a variably rotating drum. The resulting matrices of high porosity (99%) mimicked valve mechanical anisotropy. Dynamically seeded hADSC and hVIC cultured on scaffolds up to 20 days revealed that hADSC and hVIC penetration within the matrices was improved by anisotropic organization. Within 10 days, cells populated the entire scaffolds thickness and produced ECM (collagen I, III and elastin). As a result, mechanical properties of the constructs were improved over culture, while remaining anisotropic. In contrast to isotropic matrices, anisotropy induced elongated hADSCs and hVICs morphology that followed nanofibres orientation. Interestingly, these morphological changes did not induce hADSC differentiation towards the mesoderm lineages while hVIC recovered a physiological phenotype over culture in the biomimetic matrices. Overall, this study indicates that highly porous anisotropic jet-sprayed matrices are interesting candidates for valve tissue engineering, through anisotropic mechanical properties, efficient cell population, conservation of stem cells phenotype and recovery of hVIC physiological phenotype.
Assuntos
Valvas Cardíacas , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Células Cultivadas , HumanosRESUMO
Bone tissue engineering usually consists of associating osteoprogenitor cells and macroporous scaffolds. This study investigated the in vitro osteoblastic differentiation and resulting in vivo bone formation induced by a different approach that uses particles as substrate for human bone marrow stromal cells (hBMSCs), in order to provide cells with a higher degree of freedom and allow them to synthesize a three-dimensional (3D) environment. Biphasic calcium phosphate (BCP) particles (35 mg, ~175 µm in diameter) were therefore associated with 4 × 10(5) hBMSCs. To discriminate the roles of BCP properties and cell-synthesized 3D environments, inert glass beads (GBs) of similar size were used under the same conditions. In both cases, high cell proliferation and extensive extracellular matrix (ECM) production resulted in the rapid formation of thick cell-synthesized 3D constructs. In vitro, spontaneous osteoblastic differentiation was observed in the 3D constructs at the mRNA and protein levels by monitoring the expression of Runx2, BMP2, ColI, BSP and OCN. The hBMSC-BCP particle constructs implanted in the subcutis of nude mice induced abundant ectopic bone formation after 8 weeks (~35%, n = 5/5). In comparison, only fibrous tissue without bone was observed in the implanted hBMSC-GB constructs (n = 0/5). Furthermore, little bone formation (~3%, n = 5/5) was found in hBMSC-macroporous BCP discs (diameter 8 × 3 mm). This study underlines the lack of correspondence between bone formation and in vitro differentiation assays. Furthermore, these results highlight the importance of using BCP as well as a 3D environment for achieving high bone yield of interest for bone engineering.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Hidroxiapatitas/farmacologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular/genética , Proliferação de Células , Feminino , Humanos , Implantes Experimentais , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Microesferas , Pessoa de Meia-Idade , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Synthetic analogs to natural extracellular matrix (ECM) at the nanometer level are of great potential for regenerative medicine. This study introduces a novel and simple method to produce polymer nanofibers and evaluates the properties of the resulting structures, as well as their suitability to support cells and their potential interest for bone and vascular applications. The devised approach diffracts a polymer solution by means of a spraying apparatus and of an airstream as sole driving force. The resulting nanofibers were produced in an effective fashion and a factorial design allowed isolating the processing parameters that control nanofiber size and distribution. The nanofibrillar matrices revealed to be of very high porosity and were effectively colonized by human bone marrow mesenchymal cells, while allowing ECM production and osteoblastic differentiation. In vivo, the matrices provided support for new bone formation and provided a good patency as small diameter vessel grafts.
Assuntos
Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Prótese Vascular , Células da Medula Óssea/citologia , Diferenciação Celular , Feminino , Humanos , Osteoblastos/citologia , Osteogênese , Porosidade , Ratos , Ratos Sprague-Dawley , Células Estromais/citologiaRESUMO
Providing fully mature and functional osteoblasts is challenging for bone tissue engineering and regenerative medicine. Such cells could be obtained from multipotent bone marrow mesenchymal stem cells (MSCs) after induction by different osteogenic factors. However, there are some discrepancies in results, notably due to the use of sera and to the type of osteogenic factor. In this study, we compared the osteogenic differentiation of bone marrow MSCs induced by dexamethasone (Dex) or bone morphogenetic proteins (BMPs) by assessing phenotypes in vitro and functional osteoblasts in vivo. Reducing the content of fetal calf serum from 10% to 2% significantly increased the mineral deposition and expression of osteoblastic markers during osteogenesis. In comparison to Dex condition, the addition of BMP4 greatly improved the differentiation of MSCs into fully mature osteoblasts as seen by high expression of Osterix. These results were confirmed in different supportive matrixes, plastic flasks, or biphasic calcium phosphate biomaterials. In contrast to Dex-derived osteoblasts, BMP4-derived osteoblasts from MSCs were significantly able to produce new bone in subcutis of nude mice in accordance with in vitro results. In conclusion, we describe a convenient ex vivo method to produce consistently mature functional osteoblasts from human MSCs with use of BMP4 and low serum.
Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Soro/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Cerâmica/farmacologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/enzimologia , Camundongos , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Alicerces Teciduais/químicaRESUMO
The aim of this work was to investigate in vitro the biological events leading to ectopic bone formation in contact with microporous biphasic calcium phosphate (BCP) ceramics. After implantation, microparticles may arise from their degradation and induce an inflammatory response involving macrophages. The secretion of pro-inflammatory cytokines may affect the differentiation of osteoblasts. Mouse macrophage-like (J774) and osteoblast-like (MC3T3-E1) cells were cultured in the presence of BCP microparticles of different sizes (<20, 40-80, or 80-200 microm). The smallest microparticles decreased the viability of both cell types as measured with LDH and methyl tetrazolium salt assays, and enhanced the secretion of pro-inflammatory cytokines (IL-6 and TNF-alpha) by macrophages after 24 h, as revealed by ELISA. Osteoblastic cells were then cultured for 96 h in the presence of these pro-inflammatory cytokines and their differentiation studied by RT-PCR. MC3T3-E1 cells cultured with TNF-alpha showed a decrease in osterix, PTH receptor (PTHR1), and osteocalcin gene expression. On the contrary, IL-6 enhanced the expression of osterix, Runx2, alkaline phosphatase, and osteocalcin compared with plastic. In conclusion, this study shows that the inflammatory response initiated by BCP microparticles may have both detrimental and beneficial effects on osteogenesis.