Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5987, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752103

RESUMO

The underlying atomistic mechanism of deformation is a central problem in mechanics and materials science. Whereas deformation of crystalline metals is fundamentally understood, the understanding of deformation of amorphous metals lacks behind, particularly identifying the involved temporal and spatial scales. Here, we reveal that at small scales the size-dependent deformation behavior of amorphous metals significantly deviates from homogeneous flow, exhibiting increasing deformation rate with reducing size and gradually shifted composition. This transition suggests the deformation mechanism changes from collective atomic transport by viscous flow to individual atomic transport through interface diffusion. The critical length scale of the transition is temperature dependent, exhibiting a maximum at the glass transition. While viscous flow does not discriminate among alloy constituents, diffusion does and the constituent element with higher diffusivity deforms faster. Our findings yield insights into nano-mechanics and glass physics and may suggest alternative processing methods to epitaxially grow metallic glasses.

2.
Nat Commun ; 13(1): 3708, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764635

RESUMO

The viscosity and its temperature dependence, the fragility, are key properties of a liquid. A low fragility is believed to promote the formation of metallic glasses. Yet, the fragility remains poorly understood, since experimental data of its compositional dependence are scarce. Here, we introduce the film inflation method (FIM), which measures the fragility of metallic glass forming liquids across wide ranges of composition and glass-forming ability. We determine the fragility for 170 alloys ranging over 25 at.% in Mg-Cu-Y. Within this alloy system, large fragility variations are observed. Contrary to the general understanding, a low fragility does not correlate with high glass-forming ability here. We introduce crystallization complexity as an additional contribution, which can potentially become significant when modeling glass forming ability over many orders of magnitude.

3.
Nat Mater ; 21(2): 165-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34737454

RESUMO

Despite the importance of glass forming ability as a major alloy characteristic, it is poorly understood and its quantification has been experimentally laborious and computationally challenging. Here, we uncover that the glass forming ability of an alloy is represented in its amorphous structure far away from equilibrium, which can be exposed by conventional X-ray diffraction. Specifically, we fabricated roughly 5,700 alloys from 12 alloy systems and characterized the full-width at half-maximum, Δq, of the first diffraction peak in the X-ray diffraction pattern. A strong correlation between high glass forming ability and a large Δq was found. This correlation indicates that a large dispersion of structural units comprising the amorphous structure is the universal indicator for high metallic glass formation. When paired with combinatorial synthesis, the correlation enhances throughput by up to 100 times compared to today's state-of-the-art combinatorial methods and will facilitate the discovery of bulk metallic glasses.


Assuntos
Ligas , Vidro , Ligas/química , Vidro/química , Difração de Raios X
4.
Nano Lett ; 21(23): 10054-10061, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34809433

RESUMO

For nanostructures in advanced electronic and plasmonic systems, a single-crystal structure with controlled orientation is essential. However, the fabrication of such devices has remained challenging, as current nanofabrication methods often suffer from either polycrystalline growth or the difficulty of integrating single crystals with substrates in desired orientations and locations to create functional devices. Here we report a thermomechanical method for the controlled growth of single-crystal nanowire arrays, which enables the simultaneous synthesis, alignment, and patterning of nanowires. Within such diffusion-based thermomechanical nanomolding (TMNM), the substrate material diffuses into nanosized cavities under an applied pressure gradient at a molding temperature of ∼0.4 times the material's melting temperature. Vertically grown face-centered cubic (fcc) nanowires with the [110] direction in an epitaxial relationship with the (110) substrate are demonstrated. The ability to control the crystal structure through the substrate takes TMNM a major step further, potentially allowing all fcc and body-centered cubic (bcc) materials to be integrated as single crystals into devices.


Assuntos
Nanoestruturas , Nanofios , Nanoestruturas/química , Nanotecnologia/métodos , Nanofios/química , Temperatura
5.
Sci Adv ; 7(47): eabi4567, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797709

RESUMO

Advancements in nanotechnology require the development of nanofabrication methods for a wide range of materials, length scales, and elemental distributions. Today's nanofabrication methods are typically missing at least one demanded characteristic. Hence, a general method enabling versatile nanofabrication remains elusive. Here, we show that, when revealing and using the underlying mechanisms of thermomechanical nanomolding, a highly versatile nanofabrication toolbox is the result. Specifically, we reveal interface diffusion and dislocation slip as the controlling mechanisms and use their transition to control, combine, and predict the ability to fabricate general materials, material combinations, and length scales. Designing specific elemental distributions is based on the relative diffusivities, the transition temperature, and the distribution of the materials in the feedstock. The mechanistic origins of thermomechanical nanomolding and their homologous temperature-dependent transition suggest a versatile toolbox capable of combining many materials in nanostructures and potentially producing any material in moldable shapes on the nanoscale.

6.
ACS Nano ; 15(9): 14275-14284, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34473492

RESUMO

Nanofabrication techniques are limited by at least one of the required characteristics such as choice of material, control over geometry, fabrication requirements, yield, cost, and scalability. Our previously developed method of thermomechanical nanomolding fulfills these requirements, although it requires high processing temperatures. Here, we demonstrate low-temperature molding where we utilize the enhanced diffusivity on "eutectic interfaces". Gold nanorods are molded at room temperature using Au-Si alloy as feedstock. Instead of using alloy feedstock, these "eutectic interfaces" can also be established through a feedstock-mold combination. We demonstrate this by using pure Au as feedstock, which is molded into Si molds at room temperature, and also the reverse, Si feedstock is molded into Au molds forming high aspect ratio Au-Si core-shell nanorods. We discuss the mechanism of this low-temperature nanomolding in terms of lower homologous temperature at the eutectic interface. This technique, based on enhanced eutectic interface diffusion, provides a practical nanofabrication method that eliminates the previous high-temperature requirements, thereby expanding the range of the materials that can be practically nanofabricated.

7.
Nat Commun ; 12(1): 3768, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145267

RESUMO

Functional particles that respond to external stimuli are spurring technological evolution across various disciplines. While large-scale production of functional particles is needed for their use in real-life applications, precise control over particle shapes and directional properties has remained elusive for high-throughput processes. We developed a high-throughput emulsion-based process that exploits rapid vitrification of a thixotropic medium to manufacture diverse functional particles in large quantities. The vitrified medium renders stationary emulsion droplets that preserve their shape and size during solidification, and energetic fields can be applied to build programmed anisotropy into the particles. We showcase mass-production of several functional particles, including low-melting point metallic particles, self-propelling Janus particles, and unidirectionally-magnetized robotic particles, via this static-state particle fabrication process.

8.
Sci Rep ; 11(1): 3903, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594154

RESUMO

Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al-Ni-Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104 K/s.

9.
Phys Rev Lett ; 124(3): 036102, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031828

RESUMO

Large-scale, controlled fabrication of ordered phases is challenging at the nanoscale, yet highly demanded as their well-ordered structure and chemistry is the key for advanced functionality. Here, we demonstrate a general nanomolding process of ordered phases based on atomic diffusion. Resulting nanowires are single crystals and maintain their composition and structure throughout their length, which we explain by a self-ordering process originating from their narrow Gibbs free energy. The versatility, control, and precision of this thermomechanical nanomolding method of ordered phases provides new insights into single crystal growth and suggest itself as a technology to enable wide spread usage for nanoscale and quantum devices.

10.
ACS Comb Sci ; 21(10): 666-674, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31525903

RESUMO

Corrosion trends in the bulk metallic glass forming alloy system Zr-Cu-Al are studied through a fast screening visual characterization method of thin film alloy libraries prepared by magnetron co-sputtering. Significant distinct brightness changes are present within the Zr-Cu-Al system when the thin film library is immersed in 3.5 wt % NaCl. Through additional quantification of corrosion current density, a correlation between change in brightness and corrosion current density is revealed, suggesting an effective rapid screening of corrosion simply by a visual method. For materials discovery with optimized multiproperties, we utilize the corrosion fast screening results and superimpose them on the composition dependence of the glass forming ability. This allows us to rapidly identify alloys with the best combination of glass forming ability and corrosion resistance, which we then confirm in bulk form.


Assuntos
Ligas/química , Alumínio/química , Técnicas de Química Combinatória , Cobre/química , Zircônio/química , Vidro/química
11.
Sci Rep ; 9(1): 7136, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073200

RESUMO

Aluminum-based quasicrystals typically form across narrow composition ranges within binary to quaternary alloys, which makes their fabrication and characterization challenging. Here, we use combinatorial approaches together with fast characterization techniques to study a wide compositional range including known quasicrystal forming compositions. Specifically, we use magnetron co-sputtering to fabricate libraries of ~140 Al-Cu-Fe and ~300 Al-Cu-Fe-Cr alloys. The alloys compositions are measured through automated energy dispersive X-ray spectroscopy. Phase formation and thermal stability are investigated for different thermal processing conditions (as-sputtered and annealed at 400 °C, 520 °C and 600 °C for Al-Cu-Fe libraries; annealed at 600 °C for Al-Cu-Fe-Cr libraries) using automated X-ray diffraction and transmission electron microscopy. In both systems the compositional regions across which the quasicrystalline phase forms are identified. In particular, we demonstrate that the quasicrystalline phase forms across an unusually broad composition range in the Al-Cu-Fe-Cr system. Additionally, some of the considered alloys vitrify during sputtering, which also allows us to study their nucleation behavior. We find that phases with polytetrahedral symmetry, such as the icosahedral quasicrystal and the λ-Al13Fe4 phase, exhibit higher nucleation rates but lower growth rates, as compared to other phases with a lower degree of polytetrahedral order. Altogether, the here used combinatorial approach is powerful to identify compositional regions of quasicrystals.

12.
Nat Commun ; 10(1): 915, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796248

RESUMO

While common growth models assume a structure-less liquid composed of atomic flow units, structural ordering has been shown in liquid metals. Here, we conduct in situ transmission electron microscopy crystallization experiments on metallic glass nanorods, and show that structural ordering strongly affects crystal growth and is controlled by nanorod thermal history. Direct visualization reveals structural ordering as densely populated small clusters in a nanorod heated from the glass state, and similar behavior is found in molecular dynamics simulations of model metallic glasses. At the same growth temperature, the asymmetry in growth rate for rods that are heated versus cooled decreases with nanorod diameter and vanishes for very small rods. We hypothesize that structural ordering enhances crystal growth, in contrast to assumptions from common growth models. The asymmetric growth rate is attributed to the difference in the degree of the structural ordering, which is pronounced in the heated glass but sparse in the cooled liquid.

13.
Phys Rev Lett ; 122(3): 036101, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735412

RESUMO

We report on a thermomechanical nanomolding method for crystalline metals. Quantified by the aspect ratio, this process becomes easier with decreasing mold diameter. As the responsible underlying diffusion mechanism is present in all metals and alloys, the discovered nanomolding process provides a toolbox to shape essentially any metal and alloy into a nanofeature. Technologically, this highly versatile and practical thermomechanical nanomolding technique offers a method to fabricate high-surface-area metallic nanostructures which are impactful in diverse fields of applications including catalysts, sensors, photovoltaics, microelectronics, and plasmonics.

14.
Nat Commun ; 8(1): 1980, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215011

RESUMO

Many physical phenomena deviate from their established frameworks when the system approaches relevant length scales governing the phenomena. In crystallization, the relevant length scales are the nucleation length set by the nucleus size and density, and the growth length set by diffusion fields. Here we observe unexpected crystallization phenomena at the nanoscale, using metallic glass (MG) nanorods and in situ transmission electron microscopy. The asymmetry between critical heating and cooling rates disappears for small MG nanorods. Strikingly, an apparent single crystalline phase with its composition similar to the glass composition is observed for very small rods, in contrast to bulk samples. We attribute this to the lack of nuclei in small MG nanorods that approach the nucleation length, thus coined the term, nucleus starvation. By controlling the MG nanorod diameter and crystallization kinetics, we can tune the number of nuclei in a nanorod, thereby tailoring the resulting crystallization phases.

15.
ACS Nano ; 10(3): 3257-66, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26808095

RESUMO

Heterogeneous electrode materials with hierarchical architectures promise to enable considerable improvement in future energy storage devices. In this study, we report on a tailored synthetic strategy used to create heterogeneous tungsten sulfide/oxide core-shell nanofiber materials with vertically and randomly aligned thorn-bush features, and we evaluate them as potential anode materials for high-performance Na-ion batteries. The WSx (2 ≤ x ≤ 3, amorphous WS3 and crystalline WS2) nanofiber is successfully prepared by electrospinning and subsequent calcination in a reducing atmosphere. To prevent capacity degradation of the WSx anodes originating from sulfur dissolution, a facile post-thermal treatment in air is applied to form an oxide passivation surface. Interestingly, WO3 thorn bundles are randomly grown on the nanofiber stem, resulting from the surface conversion. We elucidate the evolving morphological and structural features of the nanofibers during post-thermal treatment. The heterogeneous thorn-bush nanofiber electrodes deliver a high second discharge capacity of 791 mAh g(-1) and improved cycle performance for 100 cycles compared to the pristine WSx nanofiber. We show that this hierarchical design is effective in reducing sulfur dissolution, as shown by cycling analysis with counter Na electrodes.

16.
Nat Commun ; 6: 8157, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323828

RESUMO

Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.

17.
Nat Commun ; 6: 7043, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25901951

RESUMO

Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top-down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties.

18.
Nat Mater ; 13(5): 494-500, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24728462

RESUMO

The identification of multicomponent alloys out of a vast compositional space is a daunting task, especially for bulk metallic glasses composed of three or more elements. Despite an increasing theoretical understanding of glass formation, bulk metallic glasses are predominantly developed through a sequential and time-consuming trial-and-error approach. Even for binary systems, accurate quantum mechanical approaches are still many orders of magnitude away from being able to simulate the relatively slow kinetics of glass formation. Here, we present a high-throughput strategy where ∼3,000 alloy compositions are fabricated simultaneously and characterized for thermoplastic formability through parallel blow forming. Using this approach, we identified the composition with the highest thermoplastic formability in the glass-forming system Mg-Cu-Y. The method provides a versatile toolbox for unveiling complex correlations of material properties and glass formation, and should facilitate a drastic increase in the discovery rate of metallic glasses.

19.
Adv Mater ; 25(21): 2920-5, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23616287

RESUMO

A high-yield solution-processed ultrathin (<10 nm) trigonal tellurium (t-Te) nanowire (NW) is introduced as a new class of piezoelectric nanomaterial with a six-fold higher piezoelectric constant compared to conventional ZnO NWs for a high-volume power-density nanogenerator (NG). While determining the energy-harvesting principle in a NG consisting of t-Te NW, it is theoretically and experimentally found that t-Te NW is piezoelectrically activated only by creating strain in its radial direction, along which it has an asymmetric crystal structure. Based upon this mechanism, a NG with a monolayer consisting of well-aligned t-Te NWs and a power density of 9 mW/cm(3) is fabricated.


Assuntos
Fontes de Energia Elétrica , Nanofios/química , Telúrio/química , Desenho de Equipamento , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA