Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 32(7): 1131-1141, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35403756

RESUMO

The purpose of this study was to investigate the effect of specific collagen peptides (SCP) combined with resistance training (RT) on changes in tendinous and muscular properties. In a randomized, placebo-controlled study, 40 healthy male volunteers (age: 26.3 ± 4.0 years) completed a 14 weeks high-load resistance training program. One group received a daily dosage of 5g SCP while the other group received 5g of a placebo (PLA) supplement. Changes in Achilles tendon cross-sectional area (CSA), tendon stiffness, muscular strength, and thickness of the plantar flexors were measured. The SCP supplementation led to a significantly (p = 0.002) greater increase in tendon CSA (+11.0%) compared with the PLA group (+4.7%). Moreover, the statistical analysis revealed a significantly (p = 0.014) greater increase in muscle thickness in the SCP group (+7.3%) compared with the PLA group (+2.7%). Finally, tendon stiffness and muscle strength increased in both groups, with no statistical difference between the groups. In conclusion, the current study shows that the supplementation of specific collagen peptides combined with RT is associated with a greater hypertrophy in tendinous and muscular structures than RT alone in young physically active men. These effects might play a role in reducing tendon stress (i.e., deposition of collagen in load-bearing structures) during daily activities.


Assuntos
Tendão do Calcâneo , Treinamento Resistido , Tendão do Calcâneo/fisiologia , Adulto , Colágeno , Suplementos Nutricionais , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Peptídeos , Poliésteres/farmacologia , Adulto Jovem
2.
J Appl Physiol (1985) ; 127(6): 1660-1667, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725362

RESUMO

Low-load blood flow restriction (LL-BFR) training has gained increasing interest in the scientific community by demonstrating that increases in muscle mass and strength are comparable to conventional high-load (HL) resistance training. Although adaptations on the muscular level are well documented, there is little evidence on how LL-BFR training affects human myotendinous properties. Therefore, the aim of the present study was to investigate morphological and mechanical Achilles tendon adaptations after 14 wk of strength training. Fifty-five male volunteers (27.9 ± 5.1 yr) were randomly allocated into the following three groups: LL-BFR [20-35% of one-repetition maximum (1RM)], HL (70-85% 1RM), or a nonexercising control (CON) group. The LL-BFR and HL groups completed a resistance training program for 14 wk, and tendon morphology, mechanical as well as material properties, and muscle cross-sectional area (CSA) and isometric strength were assessed before and after the intervention. Both HL (+40.7%) and LL-BFR (+36.1%) training induced significant increases in tendon stiffness (P < 0.05) as well as tendon CSA (HL: +4.6%, LL-BFR: +7.8%, P < 0.001). These changes were comparable between groups without significant changes in Young's modulus. Furthermore, gastrocnemius medialis muscle CSA and plantar flexor strength significantly increased in both training groups (P < 0.05), whereas the CON group did not show significant changes in any of the evaluated parameters. In conclusion, the adaptive change in Achilles tendon properties following low-load resistance training with partial vascular occlusion appears comparable to that evoked by high-load resistance training.NEW & NOTEWORTHY Low-load blood flow restriction (LL-BFR) training has been shown to induce beneficial adaptations at the muscular level. However, studies examining the effects on human tendon properties are rare. The findings provide first evidence that LL-BFR can increase Achilles tendon mechanical and morphological properties to a similar extent as conventional high-load resistance training. This is of particular importance for individuals who may not tolerate heavy training loads but still aim for improvements in myotendinous function.


Assuntos
Tendão do Calcâneo/fisiologia , Adaptação Fisiológica/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Adolescente , Adulto , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA