Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8020, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580663

RESUMO

The two-spotted spider mite (TSSM), Tetranychus urticae, is among the most destructive piercing-sucking herbivores, infesting more than 1100 plant species, including numerous greenhouse and open-field crops of significant economic importance. Its prolific fecundity and short life cycle contribute to the development of resistance to pesticides. However, effective resistance loci in plants are still unknown. To advance research on plant-mite interactions and identify genes contributing to plant immunity against TSSM, efficient methods are required to screen large, genetically diverse populations. In this study, we propose an analytical pipeline utilizing high-resolution imaging of infested leaves and an artificial intelligence-based computer program, MITESPOTTER, for the precise analysis of plant susceptibility. Our system accurately identifies and quantifies eggs, feces and damaged areas on leaves without expert intervention. Evaluation of 14 TSSM-infested Arabidopsis thaliana ecotypes originating from diverse global locations revealed significant variations in symptom quantity and distribution across leaf surfaces. This analytical pipeline can be adapted to various pest and host species, facilitating diverse experiments with large specimen numbers, including screening mutagenized plant populations or phenotyping polymorphic plant populations for genetic association studies. We anticipate that such methods will expedite the identification of loci crucial for breeding TSSM-resistant plants.


Assuntos
Arabidopsis , Tetranychidae , Animais , Tetranychidae/genética , Inteligência Artificial , Melhoramento Vegetal , Plantas
2.
Sci Rep ; 8(1): 8253, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844499

RESUMO

We study scientific collaboration at the level of universities. The scope of this study is to answer two fundamental questions: (i) can one indicate a category (i.e., a scientific discipline) that has the greatest impact on the rank of the university and (ii) do the best universities collaborate with the best ones only? Restricting ourselves to the 100 best universities from year 2009 we show how the number of publications in certain categories correlates with the university rank. Strikingly, the expected negative trend is not observed in all cases - for some categories even positive values are obtained. After applying Principal Component Analysis we observe clear categorical separation of scientific disciplines, dividing the papers into almost separate clusters connected to natural sciences, medicine and arts and humanities. Moreover, using complex networks analysis, we give hints that the scientific collaboration is still embedded in the physical space and the number of common papers decays with the geographical distance between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA