Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(40): 18296-18304, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173876

RESUMO

Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.


Assuntos
Cisteína , Heme , Proteínas de Bactérias/química , Catálise , Cisteína/metabolismo , Citocromos/química , Heme/química , Ligantes , Oxirredução , Estresse Oxidativo , Oxirredutases/metabolismo , Sulfitos , Enxofre/metabolismo , Tiossulfatos/metabolismo
2.
Nature ; 608(7923): 518-522, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978127

RESUMO

Photoelectrochemical (PEC) artificial leaves hold the potential to lower the costs of sustainable solar fuel production by integrating light harvesting and catalysis within one compact device. However, current deposition techniques limit their scalability1, whereas fragile and heavy bulk materials can affect their transport and deployment. Here we demonstrate the fabrication of lightweight artificial leaves by employing thin, flexible substrates and carbonaceous protection layers. Lead halide perovskite photocathodes deposited onto indium tin oxide-coated polyethylene terephthalate achieved an activity of 4,266 µmol H2 g-1 h-1 using a platinum catalyst, whereas photocathodes with a molecular Co catalyst for CO2 reduction attained a high CO:H2 selectivity of 7.2 under lower (0.1 sun) irradiation. The corresponding lightweight perovskite-BiVO4 PEC devices showed unassisted solar-to-fuel efficiencies of 0.58% (H2) and 0.053% (CO), respectively. Their potential for scalability is demonstrated by 100 cm2 stand-alone artificial leaves, which sustained a comparable performance and stability (of approximately 24 h) to their 1.7 cm2 counterparts. Bubbles formed under operation further enabled 30-100 mg cm-2 devices to float, while lightweight reactors facilitated gas collection during outdoor testing on a river. This leaf-like PEC device bridges the gulf in weight between traditional solar fuel approaches, showcasing activities per gram comparable to those of photocatalytic suspensions and plant leaves. The presented lightweight, floating systems may enable open-water applications, thus avoiding competition with land use.

3.
Nanotechnology ; 31(35): 354002, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32403091

RESUMO

A growing number of bacterial species are known to move electrons across their cell envelopes. Naturally this occurs in support of energy conservation and carbon-fixation. For biotechnology it allows electron exchange between bacteria and electrodes in microbial fuel cells and during microbial electrosynthesis. In this context Rhodopseudomonas palustris TIE-1 is of much interest. These bacteria respond to light by taking electrons from their external environment, including electrodes, to drive CO2-fixation. The PioA cytochrome, that spans the bacterial outer membrane, is essential for this electron transfer and yet little is known about its structure and electron transfer properties. Here we reveal the ten c-type hemes of PioA are redox active across the window +250 to -400 mV versus Standard Hydrogen Electrode and that the hemes with most positive reduction potentials have His/Met and His/H2O ligation. These chemical and redox properties distinguish PioA from the more widely studied family of MtrA outer membrane decaheme cytochromes with ten His/His ligated hemes. We predict a structure for PioA in which the hemes form a chain spanning the longest dimension of the protein, from Heme 1 to Heme 10. Hemes 2, 3 and 7 are identified as those most likely to have His/Met and/or His/H2O ligation. Sequence analysis suggests His/Met ligation of Heme 2 and/or 7 is a defining feature of decaheme PioA homologs from over 30 different bacterial genera. His/Met ligation of Heme 3 appears to be less common and primarily associated with PioA homologs from purple non-sulphur bacteria belonging to the alphaproteobacteria class.


Assuntos
Citocromos/química , Citocromos/metabolismo , Heme/química , Rodopseudomonas/fisiologia , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas , Transporte de Elétrons , Modelos Moleculares , Fotossíntese , Conformação Proteica
4.
J Am Chem Soc ; 141(44): 17498-17502, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31638793

RESUMO

The biological formate hydrogenlyase (FHL) complex links a formate dehydrogenase (FDH) to a hydrogenase (H2ase) and produces H2 and CO2 from formate via mixed-acid fermentation in Escherichia coli. Here, we describe an electrochemical and a colloidal semiartificial FHL system that consists of an FDH and a H2ase immobilized on conductive indium tin oxide (ITO) as an electron relay. These in vitro systems benefit from the efficient wiring of a highly active enzyme pair and allow for the reversible conversion of formate to H2 and CO2 under ambient temperature and pressure. The hybrid systems provide a template for the design of synthetic catalysts and surpass the FHL complex in vivo by storing and releasing H2 on demand by interconverting CO2/H2 and formate with minimal bias in either direction.

5.
J Biol Chem ; 294(47): 18002-18014, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31467084

RESUMO

Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em ) of the corresponding redox transformations are similar, -185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em , -129 mV) to His/Met (Em , +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s).


Assuntos
Campylobacter jejuni/enzimologia , Chromatiaceae/enzimologia , Heme/metabolismo , Oxirredutases/metabolismo , Dicroísmo Circular , Eletroquímica , Transporte de Elétrons , Oxirredução , Tiossulfatos/metabolismo
6.
Chem Commun (Camb) ; 55(60): 8840-8843, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31168558

RESUMO

Redox reactions and paramagnetic intermediates are ubiquitous in biological chemistry. We report a new method, protein film electrochemical electron paramagnetic resonance spectroscopy (PFE-EPR), that enables the direct and accurate potential control of proteins on the electrode surface for both electrochemical and EPR spectroscopic characterisation of their redox centres.


Assuntos
Óxidos N-Cíclicos/química , Técnicas Eletroquímicas/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Superóxido Dismutase-1/química , Animais , Bovinos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Oxirredução
8.
Nano Lett ; 19(3): 1844-1850, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30689393

RESUMO

Semiartificial photosynthesis integrates photosynthetic enzymes with artificial electronics, which is an emerging approach to reroute the natural photoelectrogenetic pathways for sustainable fuel and chemical synthesis. However, the reduced catalytic activity of enzymes in bioelectrodes limits the overall performance and further applications in fuel production. Here, we show new insights into factors that affect the photoelectrogenesis in a model system consisting of photosystem II and three-dimensional indium tin oxide and graphene electrodes. Confocal fluorescence microscopy and in situ surface-sensitive infrared spectroscopy are employed to probe the enzyme distribution and penetration within electrode scaffolds of different structures, which is further correlated with protein film-photoelectrochemistry to establish relationships between the electrode architecture and enzyme activity. We find that the hierarchical structure of electrodes mainly influences the protein loading but not the enzyme activity. Photoactivity is more limited by light intensity and electronic communication at the biointerface. This study provides guidelines for maximizing the performance of semiartificial photosynthesis and also presents a set of methodologies to probe the photoactive biofilms in three-dimensional electrodes.


Assuntos
Transporte de Elétrons , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Relação Estrutura-Atividade , Catálise , Eletrodos , Grafite/química , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Compostos de Estanho/química , Água/química
9.
J Am Chem Soc ; 140(48): 16418-16422, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30452863

RESUMO

Solar-driven coupling of water oxidation with CO2 reduction sustains life on our planet and is of high priority in contemporary energy research. Here, we report a photoelectrochemical tandem device that performs photocatalytic reduction of CO2 to formate. We employ a semi-artificial design, which wires a W-dependent formate dehydrogenase (FDH) cathode to a photoanode containing the photosynthetic water oxidation enzyme, Photosystem II, via a synthetic dye with complementary light absorption. From a biological perspective, the system achieves a metabolically inaccessible pathway of light-driven CO2 fixation to formate. From a synthetic point of view, it represents a proof-of-principle system utilizing precious-metal-free catalysts for selective CO2-to-formate conversion using water as an electron donor. This hybrid platform demonstrates the translatability and versatility of coupling abiotic and biotic components to create challenging models for solar fuel and chemical synthesis.


Assuntos
Dióxido de Carbono/química , Formiato Desidrogenases/química , Complexo de Proteína do Fotossistema II/química , Biocatálise/efeitos da radiação , Corantes/química , Corantes/efeitos da radiação , Cianobactérias/enzimologia , Desulfovibrio vulgaris/enzimologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Cetonas/química , Cetonas/efeitos da radiação , Luz , Oxirredução , Complexo de Proteína do Fotossistema II/efeitos da radiação , Plastoquinona/química , Estudo de Prova de Conceito , Pirróis/química , Pirróis/efeitos da radiação , Titânio/química , Água/química
10.
J Am Chem Soc ; 140(51): 17923-17931, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30188698

RESUMO

Protein film photoelectrochemistry has previously been used to monitor the activity of photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven reaction kinetics and mechanistic pathways in real time at the enzyme-electrode interface. This setup allows us to study photochemical H2O oxidation in photosystem II and to gain an in-depth understanding of pathways that generate reactive oxygen species. The results show that photosystem II reacts with O2 through two main pathways that both involve a superoxide intermediate to produce H2O2. The first pathway involves the established chlorophyll triplet-mediated formation of singlet oxygen, which is followed by its reduction to superoxide at the electrode surface. The second pathway is specific for the enzyme/electrode interface: an exposed antenna chlorophyll is sufficiently close to the electrode for rapid injection of an electron to form a highly reducing chlorophyll anion, which reacts with O2 in solution to produce O2•-. Incomplete H2O oxidation does not significantly contribute to reactive oxygen formation in our conditions. The rotating ring disk electrode technique allows the chemical reactivity of photosystem II to be studied electrochemically and opens several avenues for future investigation.

11.
Angew Chem Int Ed Engl ; 57(33): 10595-10599, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29888857

RESUMO

Hydrogenases (H2 ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p-type Si photocathode for optimal loading and wiring of H2 ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton-reducing Si|IO-TiO2 |H2 ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias-free) water splitting by wiring Si|IO-TiO2 |H2 ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO-TiO2 |H2 ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z-scheme that replaces the non-complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.


Assuntos
Hidrogenase/metabolismo , Energia Solar , Água/metabolismo , Bismuto/química , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/metabolismo , Luz , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Silício/química , Titânio/química , Vanadatos/química , Água/química
12.
J Am Chem Soc ; 140(1): 6-9, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28915035

RESUMO

Factors governing the photoelectrochemical output of photosynthetic microorganisms are poorly understood, and energy loss may occur due to inefficient electron transfer (ET) processes. Here, we systematically compare the photoelectrochemistry of photosystem II (PSII) protein-films to cyanobacteria biofilms to derive: (i) the losses in light-to-charge conversion efficiencies, (ii) gains in photocatalytic longevity, and (iii) insights into the ET mechanism at the biofilm interface. This study was enabled by the use of hierarchically structured electrodes, which could be tailored for high/stable loadings of PSII core complexes and Synechocystis sp. PCC 6803 cells. The mediated photocurrent densities generated by the biofilm were 2 orders of magnitude lower than those of the protein-film. This was partly attributed to a lower photocatalyst loading as the rate of mediated electron extraction from PSII in vitro is only double that of PSII in vivo. On the other hand, the biofilm exhibited much greater longevity (>5 days) than the protein-film (<6 h), with turnover numbers surpassing those of the protein-film after 2 days. The mechanism of biofilm electrogenesis is suggested to involve an intracellular redox mediator, which is released during light irradiation.


Assuntos
Técnicas Eletroquímicas , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Biofilmes , Cianobactérias/metabolismo , Eletrodos , Complexo de Proteína do Fotossistema II/química , Synechocystis/citologia , Synechocystis/metabolismo
13.
Chem Commun (Camb) ; 53(94): 12638-12641, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29119188

RESUMO

Visible-light driven H2 evolution in water is achieved using catechol-photosensitised TiO2 nanoparticles with a molecular nickel catalyst. Layer-by-layer immobilisation of catechol-TiO2 onto tin-doped indium oxide electrodes generates photocathodic currents in the presence of an electron acceptor. This approach represents a new strategy for controlling photocurrent direction in dye-sensitised photoelectrochemical applications.

14.
Nat Chem Biol ; 12(12): 1046-1052, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27723748

RESUMO

The integration of the water-oxidation enzyme photosystem II (PSII) into electrodes allows the electrons extracted from water oxidation to be harnessed for enzyme characterization and to drive novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here we carried out protein-film photoelectrochemistry using spinach and Thermosynechococcus elongatus PSII, and we identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway. This undesirable pathway occurs as a result of photo-induced O2 reduction occurring at the chlorophyll pigments and is promoted by the embedment of PSII in an electron-conducting fullerene matrix, a common strategy for enzyme immobilization. Anaerobicity helps to recover the PSII photoresponse and unmasks the onset potentials relating to the QA/QB charge transfer process. These findings impart a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/enzimologia , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Processos Fotoquímicos , Água/química , Água/metabolismo
15.
Chem Commun (Camb) ; 52(46): 7390-3, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27193068

RESUMO

The decahaem cytochrome MtrC from Shewanella oneidensis MR-1 was employed as a protein electron conduit between a porous indium tin oxide electrode and redox enzymes. Using a hydrogenase and a fumarate reductase, MtrC was shown as a suitable and efficient diode to shuttle electrons to and from the electrode with the MtrC redox activity regulating the direction of the enzymatic reactions.

16.
J Phys Chem A ; 119(47): 11504-8, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26551039

RESUMO

The electronic structure and photoinduced dynamics of fullerenes, especially C60, is of great interest because these molecules are model systems for more complex molecules and nanomaterials. In this work we have used Rydberg Fingerprint Spectroscopy to determine the relative ionization intensities from excited SAMO (Rydberg-like) states in C60 as a function of laser wavelength. The relative ionization intensities are then compared to the ratio of the photoionization widths of the Rydberg-like states, computed in time-dependent density functional theory (TD-DFT). The agreement is remarkably good when the same photon order is required to energetically access the excited states. This illustrates the predictive potential of quantum chemistry for studying photoionization of large, complex molecules as well as confirming the assumption that is often made concerning the multiphoton excitation and rapid energy redistribution in the fullerenes.

17.
Small ; 11(34): 4351-65, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26068983

RESUMO

The origin of selectivity in the hollowing of silica nanoparticles is investigated to further understand silica. It is realized that, during the synthesis, the silica precursors are essentially ion-paired polyelectrolytes, whose nucleation depends on the concentration of the counter ions, and most importantly, the size/length of the poly(silicic acid). Thus, the "silica" that nucleates out at the different stages of synthesis has different degrees of ion doping, which explains its solubility in water, its microporosity, and the selective etching phenomena. The etching of silica in water is shown to be a matter of silica solubility, which correlates to the relative amounts of solvent and to the solvent quality (the water/isopropanol ratio). Hollowing does not occur when the silica nanoparticles are incubated in solutions presaturated with "silica," ruling out surface reposition and Ostwald ripening as the hollowing mechanism. The embedded ions in silica are confirmed by elemental analysis (CHNS) and inductively coupled plasma-mass spectrometry. The high ionic doping ratios (N/Si = 2.3% for NH3 -catalyzed silica; Na/Si = 11.2% for NaOH-catalyzed silica) explain the unusual solubility of silica in neutral water. The new view of silica with the ionic impurities on the central stage allows for insights in silica properties and versatility in synthetic design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA