Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 90: 104506, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889064

RESUMO

BACKGROUND: Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor É£ (PPARÉ£) agonists can ameliorate proteinuria. Since a recent study showed that PPARÉ£ regulates HPSE expression in liver cancer cells, we hypothesized that PPARÉ£ agonists exert their reno-protective effect by inhibiting glomerular HPSE expression. METHODS: Regulation of HPSE by PPARÉ£ was assessed in the adriamycin nephropathy rat model, and cultured glomerular endothelial cells and podocytes. Analyses included immunofluorescence staining, real-time PCR, heparanase activity assay and transendothelial albumin passage assay. Direct binding of PPARÉ£ to the HPSE promoter was evaluated by the luciferase reporter assay and chromatin immunoprecipitation assay. Furthermore, HPSE activity was assessed in 38 type 2 diabetes mellitus (T2DM) patients before and after 16/24 weeks treatment with the PPARÉ£ agonist pioglitazone. FINDINGS: Adriamycin-exposed rats developed proteinuria, an increased cortical HPSE and decreased heparan sulfate (HS) expression, which was ameliorated by treatment with pioglitazone. In line, the PPARÉ£ antagonist GW9662 increased cortical HPSE and decreased HS expression, accompanied with proteinuria in healthy rats, as previously shown. In vitro, GW9662 induced HPSE expression in both endothelial cells and podocytes, and increased transendothelial albumin passage in a HPSE-dependent manner. Pioglitazone normalized HPSE expression in adriamycin-injured human endothelial cells and mouse podocytes, and adriamycin-induced transendothelial albumin passage was reduced as well. Importantly, we demonstrated a regulatory effect of PPARÉ£ on HPSE promoter activity and direct PPARy binding to the HPSE promoter region. Plasma HPSE activity of T2DM patients treated with pioglitazone for 16/24 weeks was related to their hemoglobin A1c and showed a moderate, near significant correlation with plasma creatinine levels. INTERPRETATION: PPARÉ£-mediated regulation of HPSE expression appears an additional mechanism explaining the anti-proteinuric and renoprotective effects of thiazolidinediones in clinical practice. FUNDING: This study was financially supported by the Dutch Kidney Foundation, by grants 15OI36, 13OKS023 and 15OP13. Consortium grant LSHM16058-SGF (GLYCOTREAT; a collaboration project financed by the PPP allowance made available by Top Sector Life Sciences & Health to the Dutch Kidney Foundation to stimulate public-private partnerships).


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias , Tiazolidinedionas , Ratos , Camundongos , Humanos , Animais , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , PPAR gama , Diabetes Mellitus Tipo 2/complicações , Agonistas PPAR-gama , Células Endoteliais/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Proteinúria/tratamento farmacológico , Proteinúria/etiologia , Nefropatias/tratamento farmacológico , Doxorrubicina/efeitos adversos
2.
Sci Rep ; 11(1): 17764, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493753

RESUMO

Endothelial-mesenchymal transition (EndMT) is a form of endothelial dysfunction wherein endothelial cells acquire a mesenchymal phenotype and lose endothelial functions, which contributes to the pathogenesis of intimal hyperplasia and atherosclerosis. The mitogen activated protein kinase 7 (MAPK7) inhibits EndMT and decreases the expression of the histone methyltransferase Enhancer-of-Zeste homologue 2 (EZH2), thereby maintaining endothelial quiescence. EZH2 is the catalytic subunit of the Polycomb Repressive Complex 2 that methylates lysine 27 on histone 3 (H3K27me3). It is elusive how the crosstalk between MAPK7 and EZH2 is regulated in the endothelium and if the balance between MAPK7 and EZH2 is disturbed in vascular disease. In human coronary artery disease, we assessed the expression levels of MAPK7 and EZH2 and found that with increasing intima/media thickness ratio, MAPK7 expression decreased, whereas EZH2 expression increased. In vitro, MAPK7 activation decreased EZH2 expression, whereas endothelial cells deficient of EZH2 had increased MAPK7 activity. MAPK7 activation results in increased expression of microRNA (miR)-101, a repressor of EZH2. This loss of EZH2 in turn results in the increased expression of the miR-200 family, culminating in decreased expression of the dual-specificity phosphatases 1 and 6 who may repress MAPK7 activity. Transfection of endothelial cells with miR-200 family members decreased the endothelial sensitivity to TGFß1-induced EndMT. In endothelial cells there is reciprocity between MAPK7 signaling and EZH2 expression and disturbances in this reciprocal signaling associate with the induction of EndMT and severity of human coronary artery disease.


Assuntos
Transdiferenciação Celular/fisiologia , Doença da Artéria Coronariana/patologia , Endotélio Vascular/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Mesoderma/patologia , Proteína Quinase 7 Ativada por Mitógeno/fisiologia , Transdução de Sinais/fisiologia , Túnica Íntima/patologia , Regiões 3' não Traduzidas/genética , Doença da Artéria Coronariana/enzimologia , Estenose Coronária/enzimologia , Estenose Coronária/patologia , Fosfatase 1 de Especificidade Dupla/biossíntese , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/biossíntese , Fosfatase 6 de Especificidade Dupla/genética , Endotélio Vascular/enzimologia , Ativação Enzimática , Regulação da Expressão Gênica , Genes Reporter , Código das Histonas , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperplasia , Mesoderma/enzimologia , MicroRNAs/biossíntese , MicroRNAs/genética , Túnica Média/patologia
3.
Front Pharmacol ; 11: 573557, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123011

RESUMO

Glomerular endothelial cell (GEnC) dysfunction is important in the pathogenesis of glomerular sclerotic diseases, including Focal Segmental Glomerulosclerosis (FSGS) and overt diabetic nephropathy (DN). GEnCs form the first cellular barrier in direct contact with cells and factors circulating in the blood. Disturbances in these circulating factors can induce GEnC dysfunction. GEnC dysfunction occurs in early stages of FSGS and DN, and is characterized by a compromised endothelial glycocalyx, an inflammatory phenotype, mitochondrial damage and oxidative stress, aberrant cell signaling, and endothelial-to-mesenchymal transition (EndMT). GEnCs are in an interdependent relationship with podocytes and mesangial cells, which involves bidirectional cross-talk via intercellular signaling. Given that GEnC behavior directly influences podocyte function, it is conceivable that GEnC dysfunction may culminate in podocyte damage, proteinuria, subsequent mesangial activation, and ultimately glomerulosclerosis. Indeed, GEnC dysfunction is sufficient to cause podocyte injury, proteinuria and activation of mesangial cells. Aberrant gene expression patterns largely contribute to GEnC dysfunction and epigenetic changes seem to be involved in causing aberrant transcription. This review summarizes literature that uncovers the importance of cross-talk between GEnCs and podocytes, and GEnCs and mesangial cells in the context of the development of FSGS and DN, and the potential use of GEnCs as efficacious cellular target to pharmacologically halt development and progression of DN and FSGS.

4.
Sci Rep ; 9(1): 19338, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31853095

RESUMO

IFNγ enhances allograft immunogenicity and facilitates T-cell mediated rejection. This may cause interstitial fibrosis and tubular atrophy (IFTA), contributing to chronic allograft loss. We assessed if inhibition of T-cell activation by N-octanoyl dopamine (NOD) impairs adherence of activated T-cells to endothelial cells and the ability of activated T-cells to produce IFNγ. We also assessed if NOD affects IFNγ mediated gene expression in endothelial cells. The presence of NOD during T-cell activation significantly blunted their adhesion to unstimulated and cytokine stimulated HUVEC. Supernatants of these T-cells displayed significantly lower concentrations of TNFα and IFNγ and were less capable to facilitate T-cell adhesion. In the presence of NOD VLA-4 (CD49d/CD29) and LFA-1 (CD11a/CD18) expression on T-cells was reduced. NOD treatment of IFNγ stimulated HUVEC reduced the expression of MHC class II transactivator (CIITA), of MHC class II and its associated invariant chain CD74. Since IFTA is associated with T-cell mediated rejection and IFNγ to a large extent regulates immunogenicity of allografts, our current data suggest a potential clinical use of NOD in the treatment of transplant recipients. Further in vivo studies are warranted to confirm these in vitro findings and to assess the benefit of NOD on IFTA in clinically relevant models.


Assuntos
Moléculas de Adesão Celular/metabolismo , Dopamina/análogos & derivados , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interferon gama/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Adesão Celular/efeitos dos fármacos , Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos HLA-DR/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Integrina alfa4beta1/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Transativadores/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA