Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 260: 155431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029376

RESUMO

A better understanding of incidences at the cellular level in uterine cancer is necessary for its effective treatment and favourable prognosis. Till date, it lacks appropriate molecular target-based treatment because of unknown molecular mechanisms that proceed to cancer and no drug has shown the required results of treatment with less severe side effects. Uterine Cancer is one of the top five cancer diagnoses and among the ten most common death-causing cancer in the United States of America. There is no FDA-approved drug for it yet. Therefore, it became necessary to identify the molecular targets for molecular targeted therapy of this widely prevalent cancer type. For this study, we used a network-based approach to the list of the deregulated (both up and down-regulated) genes taking adjacent p-Value ≤ 0.05 as significance cut off for the mRNA data of uterine cancer. We constructed the protein-protein interaction (PPI) network and analyzed the degree, closeness, and betweenness centrality-like topological properties of the PPI network. Then we traced the top 30 genes listed from each topological property to find the key regulators involved in the endometrial cancer (ECa) network. We then detected the communities and sub-communities from the PPI network using the Cytoscape network analyzer and Louvain modularity optimization method. A set of 26 (TOP2A, CENPE, RAD51, BUB1, BUB1B, KIF2C, KIF23, KIF11, KIF20A, ASPM, AURKA, AURKB, PLK1, CDC20, CDKN2A, EZH2, CCNA2, CCNB1, CDK1, FGF2, PRKCA, PGR, CAMK2A, HPGDS, and CDCA8) genes were found to be key genes of ECa regulatory network altered in disease state and might be playing the regulatory role in complex ECa network. Our study suggests that among these genes, KIF11 and H PGDS appeared to be novel key genes identified in our research. We also identified these key genes interactions with miRNAs.


Assuntos
Biomarcadores Tumorais , Mapas de Interação de Proteínas , Neoplasias Uterinas , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Neoplasias Uterinas/metabolismo , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Cinesinas
2.
J Genet Eng Biotechnol ; 22(1): 100337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494261

RESUMO

BACKGROUND: The hepatocellular carcinoma (HCC) incident rate is gradually increasing yearly despite all the research and efforts taken by scientific communities and governing bodies. Approximately 90% of all liver cancer cases belong to HCC. Usually, HCC patients approach the treatment in the late stages of this malignancy which becomes the primary cause of high mortality rate. The knowledge about molecular pathogenesis of HCC is limited and needs more attention from researchers to identify the driver genes and miRNAs, which causes to translate this information into clinical practice. Therefore, the key regulators identification of miRNA-mRNA regulatory network is essential to identify HCC-associated genes. METHODOLOGY: We extracted microRNA (miRNA) and messenger RNA (mRNA) expression datasets of normal and tumor HCC patient samples from UCSC Xena followed by identifying differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs). Univariate and multivariate cox-proportional hazard models were utilized to identify DEMs having significant association with overall survival (OS). Kaplan-Meier (KM) plotter was used to validate the presence of prognostic DEMs. A risk-score model was used to evaluate the effectiveness of KM-plotter validated DEMs combination on risk of samples. Target DEGs of prognostic miRNAs were identified via sources such as miRTargetLink and miRWalk followed by their validation in an external microarray cohort and enrichment analysis. RESULTS: 562 DEGs and 388 DEMs were identified followed by seven prognostic miRNAs (i.e., miR-19a, miR-19b, miR-30d-5p, miR-424-5p, miR-3677-5p, miR-3913-5p, miR-7705) post univariate, multivariate, risk-score model evaluation and KM-plotter analyses. ANLN, MRO, CPEB3 were their targets and were also validated in GSE84005 dataset. CONCLUSIONS: The findings of this study decipher that most significant miRNAs and their identified target genes have association with apoptosis, inflammation, cell cycle regulation and cancer-related pathways, which appear to contribute to HCC pathogenesis and therefore, the discovery of new targets.

3.
MethodsX ; 10: 102226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424755

RESUMO

The physicochemical properties of primary sequences of proteins helps in determining both the structure and biological functions. The sequence analysis of the proteins and nucleic acids is most fundamental element of bioinformatics. Without these elements, it is impossible to gain insight deeper molecular and biochemical mechanisms. For this purpose, the computational methods like bioinformatics tools assist experts and novices alike in resolving issues relating to protein analysis. Similarly, this proposed work, for the graphical user interface (GUI) based prediction and visualization through the computations-based method done on Jupyter Notebook with tkinter package which allows the creation of a program on a local host platform and accessed by the programmer.•When it is queried with a protein sequence, it predicts physicochemical parameters of the peptides.•Users can choose to visualize the findings acquired either anonymously or on the user-specified email address and compare the biophysical properties of one protein with other using amino acids (AA) sequences. The aim of this paper is to meet the requirements of experimentalists, not just hardcore bioinformaticians related to biophysical properties prediction and comparison with other proteins. The code for it has been uploaded on GitHub (an online repository of codes) in private mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA