Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0293377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451997

RESUMO

Myrmecochory-seed dispersal by ants-is a mutualistic interaction in which ants attracted by seed appendices take them away from the parental plant location, where seeds usually have better development odds. Not all ant species benefit plants, and the mechanisms of those divergent outcomes are still unclear, especially from the perspective of microbial third parties. Here, we explore the effects of seed manipulation on fungi communities promoted by two ant species with contrasting effects on seed germination and antimicrobial cleaning strategies. We hypothesize that: i) fungi richness is higher in seeds manipulated by Acromyrmex subterraneus (species that negatively affect seed germination), followed by unmanipulated seeds and seeds manipulated by Atta sexdens (ant species that increase seed germination) and ii) seeds manipulated by A. sexdens, Ac. subterraneus and unmanipulated seeds present dissimilar fungi compositions. We identified fungal morphotypes in three groups of seeds: i) manipulated by A. sexdens; ii) manipulated by Ac. subterraneus; iii) unmanipulated. Seeds manipulated by Ac. subterraneus exhibited higher fungal richness than those manipulated by A. sexdens and unmanipulated seeds, indicating that the ant species known to impair germination increases the fungal load on seeds. Additionally, we found that A. sexdens ants were unable to reduce fungal richness compared to unmanipulated seeds. Furthermore, fungal composition differed among all three treatments. Our results underscore the significance of ant species identity in shaping the fungal communities associated with myrmecochorous seeds. Given the potential influence of microbial infection on seed fate, we suggest considering manipulation strategies when evaluating the overall quality of an ant as a seed disperser.


Assuntos
Formigas , Dispersão de Sementes , Animais , Sementes , Plantas , Germinação , Fungos
2.
R Soc Open Sci ; 10(2): 221170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778958

RESUMO

Research findings in natural sciences need to be comparable and reproducible to effectively improve our understanding of ecological and behavioural patterns. In this sense, knowledge frontiers in biodiversity studies are directly tied to taxonomic research, especially in species-rich tropical regions. Here we analysed the taxonomic information available in 470 studies on Brazilian ant diversity published in the last 50 years. We aimed to quantify the proportion of studies that provide enough data to validate taxonomic identification, explore the frequency of studies that properly acknowledge their taxonomic background, and investigate the primary resources for ant identification in Brazil. We found that most studies on Brazilian ant diversity (73.6%) explicitly stated the methods used to identify their specimens. However, the proportion of papers that provide complete data for the repository institutions and vouchered specimens is vanishingly small (5.8%). Additionally, only 40.0% of the studies consistently presented taxon authorities and years of description, rarely referencing taxonomic publications correctly. In turn, the number of specialists and institutions consulted for ant identification in Brazil has increased in the last years, along with the number of studies that explicitly provide their taxonomic procedures for ant identification. Our findings highlight a shift between generations regarding the recognition of taxonomy as fundamental science, deepening our understanding of biodiversity.

3.
Ecol Evol ; 13(2): e9802, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818528

RESUMO

Global changes increasingly worry researchers and policymakers and may have irreversible impacts on Earth's biodiversity. Similar to other phytophysiognomies, natural grasslands suffer from the effects of land use changes and rising temperatures, threatening animal and plant communities. Birds, being very sensitive to these changes, are widely studied and fundamental to understand the dynamics of ecosystems in relation to climate and land use changes. The Campo Miner Geositta poeciloptera is a grassland bird endemic to the Brazilian Cerrado and threatened with extinction that has been widely studied in recent years. We analyze the decrease in its extent of occurrence (EOO) and the effects of climate and land use change to understand the environmental suitability of the species in current and future scenarios. We used 5 common algorithms to produce ecological niche models. For future predictions, we use two general circulation models for two different greenhouse gas emission scenarios with different climate policies, an optimistic (ssp245) and a pessimistic (ssp585), plus two land use models focusing on increasing farmlands and reducing native grasslands. The current EOO represents ~45% of that presented by the IUCN EOO. The models generated for the present were satisfactory (TSS = 0.77 and ROC = 0.90) and showed high environmental suitability in areas where the species is currently found and low suitability where it is already extinct. All future scenarios have reduced suitable areas for the species, and the models of a greater increase in temperature and increase in farmlands and a greater decrease in grasslands were the worse. Our results reinforce the need to care about biome awareness disparity and the importance of actively preserving grassy-shrub areas. Apparently, the state of Minas Gerais will be the only stronghold of the species in the coming years; however, the lack of protected areas that guarantee its survival needs attention.

4.
Front Microbiol ; 13: 994524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406426

RESUMO

Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.

5.
Proc Natl Acad Sci U S A ; 119(27): e2202310119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759674

RESUMO

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Conservação dos Recursos Naturais , Floresta Úmida , Agricultura , Brasil , Carbono , Humanos
6.
An Acad Bras Cienc ; 94(1): e20200665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35043851

RESUMO

Ecological knowledge plays a significant role in ensuring efficient ecological restoration. We conducted a systematic review to assess if sufficient ecological knowledge has been accumulated to aid restoration practices for the Cerrado, a Brazilian biome dominated by savanna ecosystems and threatened by anthropogenic disturbances. Most Cerrado restoration studies were performed by few research groups and focused primarily on two vegetation types: cerrado sensu stricto (typical savanna) and riparian forest. We also found that defining reference ecosystems and selecting plant species for restoration programs is neglected, mostly disregarding their original occurrence and proportion of plant growth forms. Furthermore, studies lacked standardized and systematic evaluation of restoration outcomes. Hence, we argue that current ecological knowledge is insufficient to guarantee the success of large-scale ecological restoration of the Cerrado. We strengthen the need to explicitly define the reference ecosystem for each Cerrado ecosystem and use its structure and composition as guidance for ecological restoration research, which should be based on a scientific approach. We encourage investigations into ecological dynamics and natural regeneration of the different vegetation types of the Cerrado and highlight the importance of integrating such knowledge with environmental laws, societal engagement and cost-effective techniques to advance Cerrado ecological restoration.


Assuntos
Biodiversidade , Ecossistema , Efeitos Antropogênicos , Brasil , Florestas , Plantas
7.
Ecol Evol ; 11(6): 2551-2560, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33815762

RESUMO

Over 70% of the total channel length in all river basins is formed by low order streams, many of which originate on mountaintops. Headwater streams play fundamental roles in processing and transporting terrestrial and aquatic organic matter, often harboring high biodiversity in bottom leaf patches deposited from riparian vegetation. The objective of this study was to assess the variation in taxonomic composition (measured by beta diversity of aquatic macroinvertebrates) among stream sites located in the Espinhaço Meridional Mountain Range, part of a UNESCO Biosphere Reserve in eastern Brazil. We tested two hypotheses. (a) Taxa turnover is the main reason for differences in aquatic insect assemblages within stream sites; we predicted that turnover would be higher than nestedness in all stream sites. (b) Stream site altitude and catchment elevation range are the main explanatory variables for the differences in beta diversity; we predicted that local stream site variables would account for only minor amounts of variation. In both dry and wet seasons, we sampled twice in two habitat types (five leaf patches in pools and five in riffles) in each of nine stream sites distributed in three different river basins. We computed average pairwise beta diversity among sampling stations and seasons in each stream site by using Jaccard and Bray-Curtis indices, and calculated the percentages of diversity resulting from turnover and nestedness. Finally, we tested the degree that local- or catchment-level predictor variables explained beta diversity. We found that turnover was the main component of beta diversity and that both dissolved oxygen and elevation range best explained Bray-Curtis beta diversity. These results reinforce the importance of leaf patches in montane (sky islands) Neotropical savanna streams as biodiversity hotbeds for macroinvertebrates, and that both local and landscape variables explained beta diversity.

8.
Physiol Biochem Zool ; 94(3): 143-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705275

RESUMO

AbstractTestosterone (T) is a sexual hormone capable of modulating several traits in birds, including aggressiveness and reproductive behavior. Although variation in T-related traits is well-known for temperate zone birds, this variation has not been extensively studied in tropical species. The campo miner (Geositta poeciloptera) is a threatened bird endemic to the grasslands of the South American Cerrado. We investigated the seasonal variation in plasma T levels and associated behavior in the campo miner, addressing the following questions: (1) Does the species exhibit seasonal variation in T profile? (2) Do males have higher plasma T levels than females, irrespective of season? (3) Are males with higher plasma T levels more aggressive than males with lower T levels? (4) Do males' plasma T levels decrease after females lay eggs? We found that T levels are higher during the breeding season than during the nonbreeding season and that males present higher T levels than females throughout the year. Such high T levels are associated with a higher probability to engage in aggressive behavior; however, T levels decline toward the egg-laying date and keep decreasing afterward. Higher T levels before egg laying are apparently related to territorial defense against invaders and extrapair copulations. With the beginning of parental care, T levels decrease, which is in line with previous observations that the species becomes less aggressive after egg laying. This study contributes to the understanding of environmental endocrinology of tropical birds, filling some knowledge gaps about the diverse Neotropical avifauna.


Assuntos
Ecossistema , Passeriformes/sangue , Passeriformes/fisiologia , Estações do Ano , Testosterona/sangue , Clima Tropical , Animais , Espécies em Perigo de Extinção , Feminino , Masculino , Fatores Sexuais
9.
Ecology ; 102(4): e03301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565639

RESUMO

Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.

10.
Food Microbiol ; 93: 103608, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32912581

RESUMO

Cocoa beans used for chocolate production are fermented seeds of Theobroma cacao obtained by a natural fermentation process. The flavors and chemical compounds produced during the fermentation process make this step one of the most important in fine chocolate production. Herein, an integrative analysis of the variation of microbial community structure, using a shotgun metagenomics approach and associated physicochemical features, was performed during fermentation of fine cocoa beans. Samples of Forastero variety (FOR) and a mixture of two hybrids (PS1319 and CCN51) (MIX) from Bahia, Brazil, were analyzed at 7 different times. In the beginning (0 h), the structures of microbial communities were very different between FOR and MIX, reflecting the original plant-associated microbiomes. The highest change in microbial community structures occurred at the first 24 h of fermentation, with a marked increase in temperature and acetic acid concentration, and pH decrease. At 24-48 h both microbial community structures were quite homogenous regarding temperature, acetic acid, succinic acid, pH, soluble proteins and total phenols. During 72-96 h, the community structure resembles an acidic and warmer environment, prevailing few acetic acid bacteria. Taxonomic richness and abundance at 72-144 h exhibited significant correlation with temperature, reducing sugars, succinic, and acetic acids. Finally, we recommend that dominant microbial species of spontaneous fine cocoa fermentations should be considered as inoculum in accordance with the farm/region and GMP to maintain a differential organoleptic feature for production of fine chocolate. In our study, a starter inoculum composed of Acetobacter pausterianus and Hanseniaspora opuntiae strains is indicated.


Assuntos
Cacau/microbiologia , Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Metagenômica/métodos , Ácido Acético/metabolismo , Acetobacter/metabolismo , Bactérias/metabolismo , Brasil , Chocolate , Aromatizantes , Hanseniaspora/genética , Hanseniaspora/metabolismo , Microbiota/genética , Sementes/microbiologia
11.
Science ; 370(6512): 117-121, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004520

RESUMO

Conservation initiatives overwhelmingly focus on terrestrial biodiversity, and little is known about the freshwater cobenefits of terrestrial conservation actions. We sampled more than 1500 terrestrial and freshwater species in the Amazon and simulated conservation for species from both realms. Prioritizations based on terrestrial species yielded on average just 22% of the freshwater benefits achieved through freshwater-focused conservation. However, by using integrated cross-realm planning, freshwater benefits could be increased by up to 600% for a 1% reduction in terrestrial benefits. Where freshwater biodiversity data are unavailable but aquatic connectivity is accounted for, freshwater benefits could still be doubled for negligible losses of terrestrial coverage. Conservation actions are urgently needed to improve the status of freshwater species globally. Our results suggest that such gains can be achieved without compromising terrestrial conservation goals.


Assuntos
Organismos Aquáticos , Conservação dos Recursos Naturais , Rios , Animais , Biodiversidade , Brasil
12.
Oecologia ; 192(1): 133-142, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31748829

RESUMO

Myrmecochory (seed dispersal by ants) is a unique seed dispersal syndrome among invertebrates. It comprises three main phases: seed removal, seed manipulation, and seed deposition. However, the contribution of each phase to seed and seedling fate remains unclear. Here, we experimentally quantified the effects of each phase of myrmecochory on seed germination and seedling establishment, the two most critical life history stages involved in plant recruitment. We established 30 sample points, and each included an adult Mabea fistulifera tree, an Atta sexdens nest entrance, and six seed depots. We monitored the germination of M. fistulifera seeds for 3 months and subsequently followed the growth and mortality of the resulting seedlings for 12 months. Only the dispersal distance influenced plant establishment, reducing seed germination and increasing seedling growth, but with no effect of seed manipulation and deposition site. Despite the contrasting effects of distance on seed germination and seedling growth, the positive effect of dispersal distance on seedling growth was ten times greater than the negative effect on seed germination. Moreover, A. sexdens behaved neither as granivore nor as herbivore of M. fistulifera seeds or seedlings, which suggests that seed dispersal by A. sexdens is advantageous to M. fistulifera. Thus, the joint occurrence of these two species in disturbed areas could have a positive effect on this pioneer plant population, which might promote forest regeneration.


Assuntos
Formigas , Dispersão de Sementes , Animais , Germinação , Plantas , Plântula , Sementes
13.
Am J Bot ; 106(7): 935-942, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281976

RESUMO

PREMISE: Fog is a frequent event in Brazilian rupestrian field and plays an important role in the physiology of several plant species. Foliar water uptake (FWU) of fog may be fast or slow depending on the species. However, fog water may negatively affect CO2 assimilation. Thus, the interference in the water and carbon balance as a result of different strategies of FWU was evaluated to verify whether fog may mitigate possible water deficit in leaves. METHODS: Four plant species with different FWU strategies were studied in a ferruginous rupestrian field with frequent fog. Gas exchange and water potential were measured before dawn and at midday during the dry and rainy seasons, separating foggy from non-foggy days during the dry season. RESULTS: The FWU speed negatively influences CO2 assimilation in the dry season, possibly because of its negative relationship with stomatal conductance, since reduced stomatal aperture impairs carbon entrance. Fog presence increased leaf water potential both in early morning and midday during the dry season. However, during the rainy season, the values of leaf water potential were lower at midday, than during the dry season with fog at midday, which favors leaf gas exchanges. CONCLUSIONS: FWU interferes negatively, but briefly with CO2 assimilation. Nevertheless, FWU prevents water loss through transpiration and increases the water status of plants in the dry season. That is, FWU results in a compensation between CO2 assimilation and foliar hydration, which, in fact, is beneficial to the plants of this ecosystem.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Água/fisiologia , Dióxido de Carbono/metabolismo
14.
Oecologia ; 190(2): 433-443, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31069514

RESUMO

Resource-ratio theory predicts that consumers should achieve optimal ratios of complementary nutrients. Accordingly, different trophic groups are expected to vary in their N-limitation depending on the extent to which they feed primarily on carbohydrate (CHO) or protein. Among arboreal ants, N-limitation ranges from high (for trophobiont tenders), intermediate (leaf foragers) and low (predators). We report results from a manipulative field experiment in a Brazilian savanna that tests the differential attractiveness of nitrogen and CHO to arboreal ants, as well as experimentally examines changes in broader ant foraging patterns in response to protein and CHO supplementation. Every tree within 32 20 × 20 m plots were supplemented with either protein, CHO; protein + CHO or a water control (n = 8 in each case) for a 7-day period in each of the wet and dry seasons. As predicted, different trophic groups responded differentially to supplementation treatment according to the extent of their N-limitation. The richness and abundance of the most N-limited group (trophobiont tenders) was highest at protein supplements, whereas less N-limited trophic groups showed highest species richness (leaf foragers) or abundance (predators) at CHO supplements. Protein supplementation markedly increased the general foraging abundance of trophobiont tenders, but decreased the abundance of leaf foragers. We attribute the latter to increased competition from behaviorally dominant trophobiont tenders. Our study provides experimental evidence that nutrient availability is a major factor influencing arboreal ant communities, both directly through the provision of different resources, and indirectly through increased competitive pressure.


Assuntos
Formigas , Animais , Brasil , Suplementos Nutricionais , Pradaria , Árvores
15.
Ecol Evol ; 9(24): 13919-13930, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938491

RESUMO

Environmental factors act as drivers of species coexistence or competition. Mesic environments favor the action of parasites and predators on gall communities, while the factors that determine the structure of gall communities in xeric environments remain unknown. We evaluated the structure of gall communities along an environmental gradient defined by intrinsic plant characteristics, soil fertility, and aridity, and investigated the role of competition as a structuring force of gall communities in xeric environments. We created null models to compare observed and simulated patterns of co-occurrence of galls and used the C-score index to assess community aggregation or segregation. We used the NES C-score (standardized C-score) to compare patterns of co-occurrence with parameters of environmental quality. Xeric environments had poorer and more arid soils and more sclerophyllous plants than mesic environments, which was reflected in the distribution patterns of gall communities. Values of the C-score index revealed a segregated distribution of gall morphospecies in xeric environments, but a random distribution in mesic environments. The low availability of resources for oviposition and the high density of gallers in xeric environments reinforce interspecific competition as an important structuring force for gall communities in these environments.

16.
Ambio ; 48(8): 867-878, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30448993

RESUMO

Most Latin American demands for drinking water are in or near urban areas. However, population growth and untreated sewage disposal degrade water quality, with negative effects for biodiversity and ecosystem services. Mobilizing society to monitor quality of urban watercourses facilitates training and allows diagnosis that may further help implement mitigation and management strategies. Therefore, our research was conducted in a > 4000 km2 metropolitan region of high human influence. Urban water body assessments were conducted by 1965 teachers and students and their consistency validated by rigorous scientific methods. The assessments revealed degradation of physical habitat, water quality, or biology in 91% of the evaluated urban stream sites. Increased knowledge concerning environmental stressors and biological responses by local citizens may increase their participation in public policy development and implementation. We conclude that participatory scientific monitoring is a viable way for improving science education, increasing social participation, and improving the ecosystem services provided by urban watercourses.


Assuntos
Ecossistema , Rios , Ecologia , Monitoramento Ambiental , Humanos , Estudantes
17.
Sci Total Environ ; 651(Pt 1): 1321-1331, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360264

RESUMO

Naturally fragmented landscapes provide suitable scenarios through which to investigate patch and landscape effects on biodiversity patterns in areas that are isolated from the disturbances usually associated with human-made fragments. We aimed to investigate the patch and landscape effects on the diversity of forest-dependent and matrix-tolerant dung beetles in a naturally fragmented landscape. We also assessed the influence that seasonal and vegetation variations had on these dung beetles. We sampled dung beetles during two summers and two winters in 14 forest islands of various sizes and shapes within a natural mountainous forest archipelago in southeast Brazil. We measured the patch and landscape variables based on high-resolution multispectral images of circular sectors with radii of 100, 250, and 500 m. We used generalized linear mixed models to relate dung beetle metrics to patch and landscape attributes. The interaction between canopy cover and season influenced both species' richness and abundance of the dung beetle metacommunity. The forest-dependent species' richness increased with greater canopy cover, regardless of the season. Patch attributes (e.g., size, canopy cover, distance to the closest patch, and distance to continuous forest) and landscape attributes (e.g., percentage of forest in the landscape, total edge, number of patches, distance to the nearest neighbor, and shape complexity) had small general effects on dung beetle species as a whole and on matrix-tolerant species in particular. However, these values strongly influenced forest-dependent species' richness, abundance, and temporal beta diversity. The matrix-tolerant species, therefore, mask the effects of patch and landscape effects on forest-dependent species within the mountainous forest archipelago. In other words, the changes in these patch and landscape attributes influenced forest-dependent and matrix-tolerant species differently. Therefore, the evaluation of entire metacommunities may not be helpful when evaluating species-specific responses in mixed landscapes-a fact that impairs the conservation of forest-dependent species.


Assuntos
Biodiversidade , Besouros/fisiologia , Floresta Úmida , Animais , Brasil , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie
18.
Glob Chang Biol ; 24(12): 5680-5694, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216600

RESUMO

Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for forest biota. Nevertheless, their capacity to regain the biotic attributes of undisturbed primary forests (UPFs) remains poorly understood. Here, we provide a comprehensive assessment of SF recovery, using extensive tropical biodiversity, biomass, and environmental datasets. These data, collected in 59 naturally regenerating SFs and 30 co-located UPFs in the eastern Amazon, cover >1,600 large- and small-stemmed plant, bird, and dung beetles species and a suite of forest structure, landscape context, and topoedaphic predictors. After up to 40 years of regeneration, the SFs we surveyed showed a high degree of biodiversity resilience, recovering, on average among taxa, 88% and 85% mean UPF species richness and composition, respectively. Across the first 20 years of succession, the period for which we have accurate SF age data, biomass recovered at 1.2% per year, equivalent to a carbon uptake rate of 2.25 Mg/ha per year, while, on average, species richness and composition recovered at 2.6% and 2.3% per year, respectively. For all taxonomic groups, biomass was strongly associated with SF species distributions. However, other variables describing habitat complexity-canopy cover and understory stem density-were equally important occurrence predictors for most taxa. Species responses to biomass revealed a successional transition at approximately 75 Mg/ha, marking the influx of high-conservation-value forest species. Overall, our results show that naturally regenerating SFs can accumulate substantial amounts of carbon and support many forest species. However, given that the surveyed SFs failed to return to a typical UPF state, SFs are not substitutes for UPFs.


Assuntos
Biodiversidade , Biomassa , Florestas , Animais , Aves/fisiologia , Ciclo do Carbono , Besouros/fisiologia , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Ecossistema , Árvores , Clima Tropical
19.
PLoS One ; 13(1): e0192185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29381768

RESUMO

Substrate type is a key-factor in nest-site selection and nest architecture of burrowing birds. However, little is known about which factors drive nest-site selection for these species, especially in the tropics. We studied the influence of soil attributes on nest-site selection by the campo miner Geositta poeciloptera, an open grassland bird that builds its nests within soil cavities. For all nests found, we measured the depth of the nest cavity and the resistance of the soil to penetration, and identified the soil horizon in which the nest was located. In soil banks with nests, we collected soil samples for granulometric analysis around each nest cavity, while in soil banks without nests we collected these samples at random points. From 43 nests found, 86% were located in the deeper soil horizons (C-horizon), and only 14% in the shallower horizons (B-horizon). Granulometric analysis showed that the C-horizons possessed a high similar granulometric composition, with high silt and low clay contents. These characteristics are associated with a low degree of structural development of the soil, which makes it easier to excavate. Contrarily, soil resistance to penetration does not seem to be an important criterion for nest site selection, although nests in more resistant the soils tend to have shallower nest cavities. Among the soil banks analyzed, 40% of those without cavities possessed a larger proportion of B-horizon relative to the C-horizon, and their texture was more clayey. On the other hand, almost all soil banks containing nest cavities had a larger C-horizon and a silty texture, indicating that soil attributes drive nest-site selection by G. poeciloptera. Thus, we conclude that the patchy distribution of G. poeciloptera can attributed to the infrequent natural exposure of the C-horizon in the tropical region, where well developed, deep and permeable soils are more common.


Assuntos
Comportamento de Nidação , Passeriformes/fisiologia , Solo , Animais
20.
Naturwissenschaften ; 104(3-4): 32, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28324174

RESUMO

Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.


Assuntos
Clima , Ecossistema , Modelos Teóricos , Solo/química , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA