Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(10): e1010662, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215331

RESUMO

We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.


Assuntos
Vaccinia virus , Vacínia , Animais , Humanos , Alcinos , Ácido Mirístico/metabolismo , Vacínia/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Internalização do Vírus
2.
Am J Respir Crit Care Med ; 204(11): 1259-1273, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469272

RESUMO

Rationale: Type 2 innate lymphoid cells (ILC2s) are significant sources of type 2 cytokines, which are implicated in the pathogenesis of asthma and asthma exacerbations. The role of ILC2s in virus-induced asthma exacerbations is not well characterized. Objectives: To characterize pulmonary ILC responses following experimental rhinovirus challenge in patients with moderate asthma and healthy subjects. Methods: Patients with moderate asthma and healthy subjects were inoculated with rhinovirus-16 and underwent bronchoscopy at baseline and at Day 3, and Day 8 after inoculation. Pulmonary ILC1s and ILC2s were quantified in bronchoalveolar lavage using flow cytometry. The ratio of bronchoalveolar lavage ILC2:ILC1 was assessed to determine their relative contributions to the clinical and immune response to rhinovirus challenge. Measurements and Main Results: At baseline, ILC2s were significantly higher in patients with asthma than in healthy subjects. At Day 8, ILC2s significantly increased from baseline in both groups, which was significantly higher in patients with asthma than in healthy subjects (all comparisons P < 0.05). In healthy subjects, ILC1s increased from baseline at Day 3 (P = 0.001), while in patients with asthma, ILC1s increased from baseline at Day 8 (P = 0.042). Patients with asthma had significantly higher ILC2:ILC1 ratios at baseline (P = 0.024) and Day 8 (P = 0.005). Increased ILC2:ILC1 ratio in patients with asthma correlated with clinical exacerbation severity and type 2 cytokines in nasal mucosal lining fluid. Conclusions: An ILC2-predominant inflammatory profile in patients with asthma was associated with increased severity and duration of rhinovirus infection compared with healthy subjects, supporting the potential role of ILC2s in the pathogenesis of virus-induced asthma exacerbations.


Assuntos
Asma/etiologia , Asma/imunologia , Asma/virologia , Progressão da Doença , Imunidade Inata , Infecções por Picornaviridae/complicações , Fatores de Virulência/imunologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Eur J Pharmacol ; 893: 173839, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359650

RESUMO

Inhaled corticosteroids (ICS) are recommended treatments for all degrees of asthma severity and in combination with bronchodilators are indicated for COPD patients with a history of frequent exacerbations. However, the long-term side effects of glucocorticoids (GCs) may include increased risk of respiratory infections, including viral triggered exacerbations. Rhinovirus (RV) infection is the main trigger of asthma and COPD exacerbations. Thus, we sought to explore the influence of GCs on viral replication. We demonstrate the ICS fluticasone propionate (FP) and two selective non-steroidal (GRT7) and steroidal (GRT10) glucocorticoid receptor (GR) agonists significantly suppress pro-inflammatory (IL-6 and IL-8) and antiviral (IFN-λ1) cytokine production and the expression of the interferon-stimulated genes (ISGs) OAS and viperin in RV-infected bronchial epithelial cells, with a consequent increase of viral replication. We also show that FP, GRT7 and GRT10 inhibit STAT1 Y701 and/or STAT2 Y690 phosphorylation and ISG mRNA induction following cell stimulation with recombinant IFN-ß. In addition, we investigated the effects of the ICS budesonide (BD) and the long-acting ß2 agonist (LABA) formoterol, alone or as an ICS/LABA combination, on RV-induced ISG expression and viral replication. Combination of BD/formoterol increases the suppression of OAS and viperin mRNA observed with both BD and formoterol alone, but an increase in viral RNA was only observed with BD treatment and not with formoterol. Overall, we provide evidence of an impairment of the innate antiviral immune response by GC therapy and the potential for GCs to enhance viral replication. These findings could have important clinical implications.


Assuntos
Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glucocorticoides/toxicidade , Mediadores da Inflamação/metabolismo , Interferon Tipo I/metabolismo , Rhinovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/toxicidade , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/virologia , Quimioterapia Combinada , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fumarato de Formoterol/toxicidade , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , Proteínas/metabolismo , Rhinovirus/crescimento & desenvolvimento , Rhinovirus/imunologia , Transdução de Sinais
4.
Front Genet ; 11: 585746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362848

RESUMO

BACKGROUND: Asthma is a chronic airway disease driven by complex genetic-environmental interactions. The role of epigenetic modifications in bronchial epithelial cells (BECs) in asthma is poorly understood. METHODS: We piloted genome-wide profiling of the enhancer-associated histone modification H3K27ac in BECs from people with asthma (n = 4) and healthy controls (n = 3). RESULTS: We identified n = 4,321 (FDR < 0.05) regions exhibiting differential H3K27ac enrichment between asthma and health, clustering at genes associated predominately with epithelial processes (EMT). We identified initial evidence of asthma-associated Super-Enhancers encompassing genes encoding transcription factors (TP63) and enzymes regulating lipid metabolism (PTGS1). We integrated published datasets to identify epithelium-specific transcription factors associated with H3K27ac in asthma (TP73) and identify initial relationships between asthma-associated changes in H3K27ac and transcriptional profiles. Finally, we investigated the potential of CRISPR-based approaches to functionally evaluate H3K27ac-asthma landscape in vitro by identifying guide-RNAs capable of targeting acetylation to asthma DERs and inducing gene expression (TLR3). CONCLUSION: Our small pilot study validates genome-wide approaches for deciphering epigenetic mechanisms underlying asthma pathogenesis in the airways.

5.
J Leukoc Biol ; 107(3): 455-466, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32052476

RESUMO

CCR4 is the sole receptor for the chemokines CCL22 and CCL17. Clinical studies of asthmatic airways have shown levels of both ligands and CCR4+ Th2 cells to be elevated, suggestive of a role in disease. Consequently, CCR4 has aroused much interest as a potential therapeutic target and an understanding of how its cell surface expression is regulated is highly desirable. To this end, receptor expression, receptor endocytosis, and chemotaxis were assessed using transfectants expressing CCR4, CCR4+ human T cell lines, and human Th2 cells polarized in vitro. CCL17 and CCL22 drove rapid endocytosis of CCR4 in a dose-dependent manner. Replenishment at the cell surface was slow and sensitive to cycloheximide, suggestive of de novo synthesis of CCR4. Constitutive CCR4 endocytosis was also observed, with the internalized CCR4 found to be significantly degraded over a 6-h incubation. Truncation of the CCR4 C-terminus by 40 amino acids had no effect on cell surface expression, but resulted in significant impairment of ligand-induced endocytosis. Consequently, migration to both CCL17 and CCL22 was significantly enhanced. In contrast, truncation of CCR4 did not impair constitutive endocytosis or degradation, suggesting the use of alternative receptor motifs in these processes. We conclude that CCR4 cell surface levels are tightly regulated, with a degradative fate for endocytosed receptor. We postulate that this strict control is desirable, given that Th2 cells recruited by CCR4 can induce the further expression of CCR4 ligands in a positive feedback loop, thereby enhancing allergic inflammation.


Assuntos
Inflamação/imunologia , Proteólise , Receptores CCR4/metabolismo , Células Th2/imunologia , Animais , Anticorpos/metabolismo , Células CHO , Membrana Celular/metabolismo , Quimiotaxia , Cricetinae , Cricetulus , Endocitose , Glicosilação , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Ligantes , Camundongos , Transfecção
7.
Am J Respir Cell Mol Biol ; 59(6): 713-722, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084659

RESUMO

Human rhinovirus (RV) infections are a significant risk factor for exacerbations of asthma and chronic obstructive pulmonary disease. Thus, approaches to prevent RV infection in such patients would give significant benefit. Through RNA interference library screening, we identified lanosterol synthase (LSS), a component of the cholesterol biosynthetic pathway, as a novel regulator of RV replication in primary normal human bronchial epithelial cells. Selective knock down of LSS mRNA with short interfering RNA inhibited RV2 replication in normal human bronchial epithelial cells. Small molecule inhibitors of LSS mimicked the effect of LSS mRNA knockdown in a concentration-dependent manner. We further demonstrated that the antiviral effect is not dependent on a reduction in total cellular cholesterol but requires a 24-hour preincubation with the LSS inhibitor. The rank order of antiviral potency of the LSS inhibitors used was consistent with LSS inhibition potency; however, all compounds showed remarkably higher potency against RV compared with the LSS enzyme potency. We showed that LSS inhibition led to an induction of 24(S),25 epoxycholesterol, an important regulator of the sterol pathway. We also demonstrated that LSS inhibition led to a profound increase in expression of the innate antiviral defense protein, IFN-ß. We found LSS to be a novel regulator of RV replication and innate antiviral immunity and identified a potential molecular mechanism for this effect, via induction of 24(S),25 epoxycholesterol. Inhibition of LSS could therefore be a novel therapeutic target for prevention of RV-induced exacerbations.


Assuntos
Antivirais/farmacologia , Brônquios/imunologia , Células Epiteliais/imunologia , Imunidade Inata/imunologia , Transferases Intramoleculares/metabolismo , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Replicação Viral/imunologia , Brônquios/efeitos dos fármacos , Brônquios/virologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/genética , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/virologia , RNA Interferente Pequeno/genética , Rhinovirus/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
8.
J Lipid Res ; 59(9): 1671-1684, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29946055

RESUMO

In patients with asthma or chronic obstructive pulmonary disease, rhinovirus (RV) infections can provoke acute worsening of disease, and limited treatment options exist. Viral replication in the host cell induces significant remodeling of intracellular membranes, but few studies have explored this mechanistically or as a therapeutic opportunity. We performed unbiased lipidomic analysis on human bronchial epithelial cells infected over a 6 h period with the RV-A1b strain of RV to determine changes in 493 distinct lipid species. Through pathway and network analysis, we identified temporal changes in the apparent activities of a number of lipid metabolizing and signaling enzymes. In particular, analysis highlighted FA synthesis and ceramide metabolism as potential anti-rhinoviral targets. To validate the importance of these enzymes in viral replication, we explored the effects of commercially available enzyme inhibitors upon RV-A1b infection and replication. Ceranib-1, D609, and C75 were the most potent inhibitors, which confirmed that FAS and ceramidase are potential inhibitory targets in rhinoviral infections. More broadly, this study demonstrates the potential of lipidomics and pathway analysis to identify novel targets to treat human disorders.


Assuntos
Brônquios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Rhinovirus/fisiologia , Replicação Viral , Antivirais/farmacologia , Células HeLa , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos
9.
Nat Commun ; 9(1): 2229, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884817

RESUMO

Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-ß reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/ß receptor (IFNAR1-/-) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-ß therapy may protect.


Assuntos
Corticosteroides/farmacologia , Carga Bacteriana/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Muco/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Rhinovirus/efeitos dos fármacos , Administração por Inalação , Corticosteroides/administração & dosagem , Corticosteroides/imunologia , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Linhagem Celular , Fluticasona/administração & dosagem , Fluticasona/imunologia , Fluticasona/farmacologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/virologia , Camundongos Knockout , Muco/microbiologia , Muco/virologia , Infecções por Picornaviridae/prevenção & controle , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Rhinovirus/imunologia , Rhinovirus/fisiologia
10.
Nat Chem ; 10(6): 599-606, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760414

RESUMO

Rhinoviruses (RVs) are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report the discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host-cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. The identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking and conformational control over linker geometry. We show that inhibition of the co-translational myristoylation of a specific virus-encoded protein (VP0) by IMP-1088 potently blocks a key step in viral capsid assembly, to deliver a low nanomolar antiviral activity against multiple RV strains, poliovirus and foot and-mouth disease virus, and protection of cells against virus-induced killing, highlighting the potential of host myristoylation as a drug target in picornaviral infections.


Assuntos
Aciltransferases/antagonistas & inibidores , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Rhinovirus/efeitos dos fármacos , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/química , Inibidores Enzimáticos/química , Células HeLa , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Rhinovirus/enzimologia , Rhinovirus/fisiologia
11.
Am J Respir Crit Care Med ; 197(10): 1265-1274, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29466680

RESUMO

RATIONALE: Immunophenotypes of antiviral responses, and their relationship with asthma, allergy, and lower respiratory tract infections, are poorly understood. OBJECTIVES: We characterized multiple cytokine responses of peripheral blood mononuclear cells to rhinovirus stimulation, and their relationship with clinical outcomes. METHODS: In a population-based birth cohort, we measured 28 cytokines after stimulation with rhinovirus-16 in 307 children aged 11 years. We used machine learning to identify patterns of cytokine responses, and related these patterns to clinical outcomes, using longitudinal models. We also ascertained phytohemagglutinin-induced T-helper cell type 2 (Th2)-cytokine responses (PHA-Th2). MEASUREMENTS AND MAIN RESULTS: We identified six clusters of children based on their rhinovirus-16 responses, which were differentiated by the expression of four cytokine/chemokine groups: interferon-related (IFN), proinflammatory (Inflam), Th2-chemokine (Th2-chem), and regulatory (Reg). Clusters differed in their clinical characteristics. Children with an IFNmodInflamhighestTh2-chemhighestReghighest rhinovirus-16-induced pattern had a PHA-Th2low response, and a very low asthma risk (odds ratio [OR], 0.08; 95% confidence interval [CI], 0.01-0.81; P = 0.03). Two clusters had a high risk of asthma and allergic sensitization, but with different trajectories from infancy to adolescence. The IFNlowestInflamhighTh2-chemlowRegmod cluster exhibited a PHA-Th2lowest response and was associated with early-onset asthma and sensitization, and the highest risk of asthma exacerbations (OR, 1.37; 95% CI, 1.07-1.76; P = 0.014) and lower respiratory tract infection hospitalizations (OR, 2.40; 95% CI, 1.26-4.58; P = 0.008) throughout childhood. In contrast, the IFNhighestInflammodTh2-chemmodReghigh cluster with a rhinovirus-16-cytokine pattern was characterized by a PHA-Th2highest response, and a low prevalence of asthma/sensitization in infancy that increased sharply to become the highest among all clusters by adolescence (but with a low risk of asthma exacerbations). CONCLUSIONS: Early-onset troublesome asthma with early-life sensitization, later-onset milder allergic asthma, and disease protection are each associated with different patterns of rhinovirus-induced immune responses.


Assuntos
Antivirais/uso terapêutico , Asma/tratamento farmacológico , Citocinas/imunologia , Infecções por Picornaviridae/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Rhinovirus/efeitos dos fármacos , Rhinovirus/imunologia , Adolescente , Antivirais/imunologia , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Masculino , Infecções por Picornaviridae/imunologia , Infecções Respiratórias/imunologia
13.
Nat Med ; 23(6): 681-691, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459437

RESUMO

Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of the type-2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type-2 responses is poorly understood. We report a significant correlation between the release of host double-stranded DNA (dsDNA) following rhinovirus infection and the exacerbation of type-2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with the formation of neutrophil extracellular traps (NETs), known as NETosis. We further demonstrate that inhibiting NETosis by blocking neutrophil elastase or by degrading NETs with DNase protects mice from type-2 immunopathology. Furthermore, the injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type-2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations.


Assuntos
Asma/imunologia , Citocinas/imunologia , DNA/imunologia , Armadilhas Extracelulares/imunologia , Infecções por Picornaviridae/imunologia , Hipersensibilidade Respiratória/imunologia , Infecções Respiratórias/imunologia , Células Th2/imunologia , Adulto , Animais , Estudos de Casos e Controles , Dermatophagoides farinae/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/imunologia , Interleucina-13/imunologia , Interleucina-4/imunologia , Interleucina-5/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Rhinovirus , Adulto Jovem
14.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28228588

RESUMO

Picornavirus replication is known to cause extensive remodeling of Golgi and endoplasmic reticulum membranes, and a number of the host proteins involved in the viral replication complex have been identified, including oxysterol binding protein (OSBP) and phosphatidylinositol 4-kinase III beta (PI4KB). Since both OSBP and PI4KB are substrates for protein kinase D (PKD) and PKD is known to be involved in the control of Golgi membrane vesicular and lipid transport, we hypothesized that PKD played a role in viral replication. We present multiple lines of evidence in support of this hypothesis. First, infection of HeLa cells with human rhinovirus (HRV) induced the phosphorylation of PKD. Second, PKD inhibitors reduced HRV genome replication, protein expression, and titers in a concentration-dependent fashion and also blocked the replication of poliovirus (PV) and foot-and-mouth disease virus (FMDV) in a variety of cells. Third, HRV replication was significantly reduced in HeLa cells overexpressing wild-type and mutant forms of PKD1. Fourth, HRV genome replication was reduced in HAP1 cells in which the PKD1 gene was knocked out by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Although we have not identified the molecular mechanism through which PKD regulates viral replication, our data suggest that this is not due to enhanced interferon signaling or an inhibition of clathrin-mediated endocytosis, and PKD inhibitors do not need to be present during viral uptake. Our data show for the first time that targeting PKD with small molecules can inhibit the replication of HRV, PV, and FMDV, and therefore, PKD may represent a novel antiviral target for drug discovery.IMPORTANCE Picornaviruses remain an important family of human and animal pathogens for which we have a very limited arsenal of antiviral agents. HRV is the causative agent of the common cold, which in itself is a relatively trivial infection; however, in asthma and chronic obstructive pulmonary disease (COPD) patients, this virus is a major cause of exacerbations resulting in an increased use of medication, worsening symptoms, and, frequently, hospital admission. Thus, HRV represents a substantial health care and economic burden for which there are no approved therapies. We sought to identify a novel host target as a potential anti-HRV therapy. HRV infection induces the phosphorylation of PKD, and inhibitors of this kinase effectively block HRV replication at an early stage of the viral life cycle. Moreover, PKD inhibitors also block PV and FMDV replication. This is the first description that PKD may represent a target for antiviral drug discovery.


Assuntos
Replicação do DNA/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Poliovirus/crescimento & desenvolvimento , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Rhinovirus/crescimento & desenvolvimento , Rhinovirus/genética , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Cricetinae , DNA Viral/biossíntese , Vírus da Febre Aftosa/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Interferon Tipo I/metabolismo , Fosforilação , Poliovirus/genética , Proteína Quinase C/metabolismo , Pirimidinas/farmacologia
15.
Mol Pharmacol ; 90(2): 65-79, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193581

RESUMO

Cystic fibrosis (CF) is a major lethal genetic disease caused by mutations in the CF transmembrane conductance regulator gene (CFTR). This encodes a chloride ion channel on the apical surface of epithelial cells. The most common mutation in CFTR (F508del-CFTR) generates a protein that is misfolded and retained in the endoplasmic reticulum. Identifying small molecules that correct this CFTR trafficking defect is a promising approach in CF therapy. However, to date only modest efficacy has been reported for correctors in clinical trials. We identified the marine sponge metabolite latonduine as a corrector. We have now developed a series of latonduine derivatives that are more potent F508del-CFTR correctors with one (MCG315 [2,3-dihydro-1H-2-benzazepin-1-one]) having 10-fold increased corrector activity and an EC50 of 72.25 nM. We show that the latonduine analogs inhibit poly-ADP ribose polymerase (PARP) isozymes 1, 3, and 16. Further our molecular modeling studies point to the latonduine analogs binding to the PARP nicotinamide-binding domain. We established the relationship between the ability of the latonduine analogs to inhibit PARP-16 and their ability to correct F508del-CFTR trafficking. We show that latonduine can inhibit both PARP-3 and -16 and that this is necessary for CFTR correction. We demonstrate that latonduine triggers correction by regulating the activity of the unfolded protein response activator inositol-requiring enzyme (IRE-1) via modulation of the level of its ribosylation by PARP-16. These results establish latonduines novel site of action as well as its proteostatic mechanism of action.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Proteínas de Ciclo Celular/química , Linhagem Celular , Endorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Modelos Moleculares , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/química , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
Dis Model Mech ; 9(6): 621-32, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27079522

RESUMO

Neutrophils are essential for host defence and are recruited to sites of inflammation in response to tissue injury or infection. For inflammation to resolve, these cells must be cleared efficiently and in a controlled manner, either by apoptosis or reverse migration. If the inflammatory response is not well-regulated, persistent neutrophils can cause damage to host tissues and contribute to the pathogenesis of chronic inflammatory diseases, which respond poorly to current treatments. It is therefore important to develop drug discovery strategies that can identify new therapeutics specifically targeting neutrophils, either by promoting their clearance or by preventing their recruitment. Our recent in vivo chemical genetic screen for accelerators of inflammation resolution identified a subset of compounds sharing a common chemical signature, the bicyclic benzopyrone rings. Here, we further investigate the mechanisms of action of the most active of this chemical series, isopimpinellin, in our zebrafish model of neutrophilic inflammation. We found that this compound targets both the recruitment and resolution phases of the inflammatory response. Neutrophil migration towards a site of injury is reduced by isopimpinellin and this occurs as a result of PI3K inhibition. We also show that isopimpinellin induces neutrophil apoptosis to drive inflammation resolution in vivo using a new zebrafish reporter line detecting in vivo neutrophil caspase-3 activity and allowing quantification of flux through the apoptotic pathway in real time. Finally, our studies reveal that clinically available 'cromones' are structurally related to isopimpinellin and have previously undescribed pro-resolution activity in vivo These findings could have implications for the therapeutic use of benzopyrones in inflammatory disease.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Peixe-Zebra/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cromolina Sódica/química , Cromolina Sódica/farmacologia , Furocumarinas/química , Furocumarinas/farmacologia , Inflamação/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Relação Estrutura-Atividade
17.
J Leukoc Biol ; 99(6): 901-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26701135

RESUMO

Chemokine receptors are typically promiscuous, binding more than one ligand, with the ligands themselves often expressed in different spatial localizations by multiple cell types. This is normally a tightly regulated process; however, in a variety of inflammatory disorders, dysregulation results in the excessive or inappropriate expression of chemokines that drives disease progression. Biased agonism, the phenomenon whereby different ligands of the same receptor are able to preferentially activate one signaling pathway over another, adds another level of complexity to an already complex system. In this minireview, we discuss the concept of biased agonism within the chemokine family and report that targeting single signaling axes downstream of chemokine receptors is not only achievable, but may well present novel opportunities to target chemokine receptors, allowing the fine tuning of receptor responses in the context of allergic inflammation and beyond.


Assuntos
Descoberta de Drogas , Receptores de Quimiocinas/agonistas , Animais , Humanos , Ligantes , Modelos Biológicos , Receptores CCR4/antagonistas & inibidores , Receptores CCR4/metabolismo , Receptores de Quimiocinas/metabolismo
18.
Eur J Pharmacol ; 763(Pt B): 169-77, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25981299

RESUMO

Since their early 1990s, the chemokine receptor family of G protein-coupled receptors (GPCRs) has been the source of much pharmacological endeavour. Best known for their key roles in recruiting leukocytes to sites of infection and inflammation, the receptors present themselves as plausible drug targets for therapeutic intervention. In this article, we will focus our attention upon CC Chemokine Receptor Four (CCR4) which has been implicated in diseases as diverse as allergic asthma and lymphoma. We will review the discovery of the receptors and their ligands, their perceived roles in disease and the successful targeting of CCR4 by both small molecule antagonists and monoclonal antibodies. We will also discuss future directions and strategies for drug discovery in this field.


Assuntos
Doença , Terapia de Alvo Molecular/métodos , Receptores CCR4/metabolismo , Animais , Humanos , Receptores CCR4/antagonistas & inibidores
19.
PLoS One ; 10(3): e0119738, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780921

RESUMO

Endoplasmic reticulum stress plays a critical role to restore the homeostasis of protein production in eukaryotic cells. This vital process is hence involved in many types of diseases including COPD. PERK, one branch in the ER stress signaling pathways, has been reported to activate NRF2 signaling pathway, a known protective response to COPD. Based on this scientific rationale, we aimed to identify PERK activators as a mechanism to achieve NRF2 activation. In this report, we describe a phenotypic screening assay to identify PERK activators. This assay measures phosphorylation of GFP-tagged eIF2α upon PERK activation via a cell-based LanthaScreen technology. To obtain a robust assay with sufficient signal to background and low variation, multiple parameters were optimized including GFP-tagged eIF2α BacMam concentration, cell density and serum concentration. The assay was validated by a tool compound, Thapsigargin, which induces phosphorylation of eIF2α. In our assay, this compound showed maximal signal window of approximately 2.5-fold with a pEC50 of 8.0, consistent with literature reports. To identify novel PERK activators through phosphorylation of eIF2α, a focused set of 8,400 compounds was screened in this assay at 10 µM. A number of hits were identified and validated. The molecular mechanisms for several selected hits were further characterized in terms of PERK activation and effects on PERK downstream components. Specificity of these compounds in activating PERK was demonstrated with a PERK specific inhibitor and in PERK knockout mouse embryonic fibroblast (MEF) cells. In addition, these hits showed NRF2-dependent anti-oxidant gene induction. In summary, our phenotypic screening assay is demonstrated to be able to identify PERK specific activators. The identified PERK activators could potentially be used as chemical probes to further investigate this pathway as well as the link between PERK activation and NRF2 pathway activation.


Assuntos
Estresse do Retículo Endoplasmático , Ensaios de Triagem em Larga Escala/métodos , Fator 2 Relacionado a NF-E2/metabolismo , eIF-2 Quinase/fisiologia , Animais , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/análise , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Fluorescência Verde/análise , Homeostase , Camundongos , Fenótipo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Tapsigargina/química , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
20.
Eur J Pharmacol ; 746: 363-7, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25016087

RESUMO

Chemokines are a family of around 40 small proteins, which are secreted by a variety of cells, including structural cell types and leukocytes of the immune system. Chemokines bind to their specific 7-transmembrane G protein-coupled receptors (GPCRs) and induce a variety of downstream signals which notably modulate polymerization of the actin cytoskeleton and thus drive cellular motility. Excessive or inappropriate release of chemokines is observed in many inflammatory diseases and so there has been a great effort in industry to target chemokine receptors. The large family of GPCRs regulate many physiological cellular processes and they have proved to be highly amenable to pharmacological intervention with small chemicals. Consequently GPCRs make attractive targets for drug discovery and indeed a large number of successful current therapeutics are either agonists or antagonists of GPCRs. The apparent lack of success with chemokine receptors has been frustrating and in this paper we discuss potential reasons for previous failures and also why there is considerable cause for optimism.


Assuntos
Fármacos Anti-HIV/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Drogas em Investigação/farmacologia , Fatores Imunológicos/farmacologia , Modelos Biológicos , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/uso terapêutico , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/uso terapêutico , Ensaios Clínicos como Assunto , Desenho de Fármacos , Descoberta de Drogas/tendências , Drogas em Investigação/efeitos adversos , Drogas em Investigação/uso terapêutico , Término Precoce de Ensaios Clínicos , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Terapia de Alvo Molecular/efeitos adversos , Receptores de Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA