Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Biol ; 27(3): 342-355, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31995401

RESUMO

The gene expression profile of a tissue averages the expression profiles of all cells in this tissue. Digital tissue deconvolution addresses the following inverse problem: given the expression profile y of a tissue, what is the cellular composition c of that tissue? If X is a matrix whose columns are reference profiles of individual cell types, the composition c can be computed by minimizing ℒ ( y - X c ) for a given loss function ℒ . Current methods use predefined all-purpose loss functions. They successfully quantify the dominating cells of a tissue, while often falling short in detecting small cell populations. In this study we use training data to learn the loss function ℒ along with the composition c . This allows us to adapt to application-specific requirements such as focusing on small cell populations or distinguishing phenotypically similar cell populations. Our method quantifies large cell fractions as accurately as existing methods and significantly improves the detection of small cell populations and the distinction of similar cell types.


Assuntos
Biologia Computacional/métodos , Melanoma/genética , Algoritmos , Expressão Gênica , Humanos , Mutação com Perda de Função , Aprendizado de Máquina
2.
J Comput Biol ; 27(3): 386-389, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31995409

RESUMO

Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation states, and embedded in different environments. Consequently, DTD can profit from tailoring the deconvolution model to a specific tissue context. Loss-function learning adapts DTD to a specific tissue context, such as the deconvolution of blood, or a specific type of tumor tissue. We provide software for loss-function learning, for its validation and visualization, and for applying the DTD models to new data.


Assuntos
Biologia Computacional/métodos , Transcriptoma , Humanos , Especificidade de Órgãos , Análise de Sequência de RNA , Software
3.
Bioinformatics ; 36(1): 241-249, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31250881

RESUMO

MOTIVATION: Cancer progresses by accumulating genomic events, such as mutations and copy number alterations, whose chronological order is key to understanding the disease but difficult to observe. Instead, cancer progression models use co-occurrence patterns in cross-sectional data to infer epistatic interactions between events and thereby uncover their most likely order of occurrence. State-of-the-art progression models, however, are limited by mathematical tractability and only allow events to interact in directed acyclic graphs, to promote but not inhibit subsequent events, or to be mutually exclusive in distinct groups that cannot overlap. RESULTS: Here we propose Mutual Hazard Networks (MHN), a new Machine Learning algorithm to infer cyclic progression models from cross-sectional data. MHN model events by their spontaneous rate of fixation and by multiplicative effects they exert on the rates of successive events. MHN compared favourably to acyclic models in cross-validated model fit on four datasets tested. In application to the glioblastoma dataset from The Cancer Genome Atlas, MHN proposed a novel interaction in line with consecutive biopsies: IDH1 mutations are early events that promote subsequent fixation of TP53 mutations. AVAILABILITY AND IMPLEMENTATION: Implementation and data are available at https://github.com/RudiSchill/MHN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional , Glioblastoma , Modelos Genéticos , Biologia Computacional/métodos , Estudos Transversais , Genoma/genética , Glioblastoma/genética , Humanos , Aprendizado de Máquina , Mutação
4.
Sci Rep ; 9(1): 13954, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562371

RESUMO

Omics data facilitate the gain of novel insights into the pathophysiology of diseases and, consequently, their diagnosis, treatment, and prevention. To this end, omics data are integrated with other data types, e.g., clinical, phenotypic, and demographic parameters of categorical or continuous nature. We exemplify this data integration issue for a chronic kidney disease (CKD) study, comprising complex clinical, demographic, and one-dimensional 1H nuclear magnetic resonance metabolic variables. Routine analysis screens for associations of single metabolic features with clinical parameters while accounting for confounders typically chosen by expert knowledge. This knowledge can be incomplete or unavailable. We introduce a framework for data integration that intrinsically adjusts for confounding variables. We give its mathematical and algorithmic foundation, provide a state-of-the-art implementation, and evaluate its performance by sanity checks and predictive performance assessment on independent test data. Particularly, we show that discovered associations remain significant after variable adjustment based on expert knowledge. In contrast, we illustrate that associations discovered in routine univariate screening approaches can be biased by incorrect or incomplete expert knowledge. Our data integration approach reveals important associations between CKD comorbidities and metabolites, including novel associations of the plasma metabolite trimethylamine-N-oxide with cardiac arrhythmia and infarction in CKD stage 3 patients.


Assuntos
Rim/metabolismo , Metabolômica , Insuficiência Renal Crônica/metabolismo , Algoritmos , Biomarcadores/sangue , Feminino , Alemanha , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Modelos Teóricos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA