Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Heliyon ; 9(10): e20507, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822610

RESUMO

Cancer stands as one of the prominent global causes of death, with its incidence burden continuously increasing, leading to a substantial rise in mortality rates. Cancer treatment has seen the development of various strategies, each carrying its drawbacks that can negatively impact the quality of life for cancer patients. The challenge remains significant within the medical field to establish a definitive cancer treatment that minimizes complications and limitations. In the forthcoming years, exploring new strategies to surmount the failures in cancer treatment appears to be an unavoidable pursuit. Among these strategies, immunology-based ones hold substantial promise in combatting cancer and immune-related disorders. A particular subset of this approach identifies "eat me" and "Don't eat me" signals in cancer cells, contrasting them with their counterparts in non-cancerous cells. This distinction could potentially mark a significant breakthrough in treating diverse cancers. By delving into signal transduction and engineering novel technologies that utilize distinct "eat me" and "Don't eat me" signals, a valuable avenue may emerge for advancing cancer treatment methodologies. Macrophages, functioning as vital components of the immune system, regulate metabolic equilibrium, manage inflammatory disorders, oversee fibrosis, and aid in the repair of injuries. However, in the context of tumor cells, the overexpression of "Don't eat me" signals like CD47, PD-L1, and beta-2 microglobulin (B2M), an anti-phagocytic subunit of the primary histocompatibility complex class I, enables these cells to evade macrophages and proliferate uncontrollably. Conversely, the presentation of an "eat me" signal, such as Phosphatidylserine (PS), along with alterations in charge and glycosylation patterns on the cellular surface, modifications in intercellular adhesion molecule-1 (ICAM-1) epitopes, and the exposure of Calreticulin and PS on the outer layer of the plasma membrane represent universally observed changes on the surface of apoptotic cells, preventing phagocytosis from causing harm to adjacent non-tumoral cells. The current review provides insight into how signaling pathways and immune cells either stimulate or obstruct these signals, aiming to address challenges that may arise in future immunotherapy research. A potential solution lies in combination therapies targeting the "eat me" and "Don't eat me" signals in conjunction with other targeted therapeutic approaches. This innovative strategy holds promise as a novel avenue for the future treatment of cancer.

2.
Pathol Res Pract ; 247: 154558, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245267

RESUMO

Cancer is one of the leading causes of mortality worldwide. Numerous strategies have been developed for cancer treatment. Metastasis, heterogeneity, chemotherapy resistance, recurrence, and evasion of immune surveillance are the primary reasons for the failure of cancer treatment. Cancer stem cells (CSCs) can give rise to tumors via self-renewal and differentiation into various cell types. They show resistance to chemotherapy and radiotherapy and have a strong capability of invasion and metastasis. Extracellular vesicles (EVs) are bilayered vesicles that carry biological molecules and are released under both healthy and unhealthy conditions. It has been shown that one of the leading causes of cancer treatment failure is cancer stem cell-derived EVs (CSC-EVs). CSC-EVs have essential roles in tumor progression, metastasis, tumor angiogenesis, chemoresistance, and immunosuppressants. In the future, controlling EV production in CSCs may be one of the most promising strategies to stop cancer treatment failures.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patologia , Vesículas Extracelulares/metabolismo , Células-Tronco Neoplásicas/patologia , Diferenciação Celular , Neovascularização Patológica/patologia
3.
Adv Exp Med Biol ; 1409: 127-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35816248

RESUMO

Stem cells are valuable tools in regenerative medicine because they can generate a wide variety of cell types and tissues that can be used to treat or replace damaged tissues and organs. However, challenges related to the application of stem cells in the scope of regenerative medicine have urged scientists to utilize nanomedicine as a prerequisite to circumvent some of these hurdles. Nanomedicine plays a crucial role in this process and manipulates surface biology, the fate of stem cells, and biomaterials. Many attempts have been made to modify cellular behavior and improve their regenerative ability using nano-based strategies. Notably, nanotechnology applications in regenerative medicine and cellular therapies are controversial because of ethical and legal considerations. Therefore, this review describes nanotechnology in cell-based applications and focuses on newly proposed nano-based approaches. Cutting-edge strategies to engineer biological tissues and the ethical, legal, and social considerations of nanotechnology in regenerative nanomedicine applications are also discussed.


Assuntos
Nanotecnologia , Medicina Regenerativa , Nanomedicina , Engenharia Tecidual , Materiais Biocompatíveis/uso terapêutico
4.
Epigenomics ; 14(11): 683-697, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35473313

RESUMO

It is estimated that colorectal cancer (CRC) is the leading cause of cancer-related death around the globe. 'Epigenetics' refers to changes in the chromosome rather than the DNA sequence, which may be transmitted down to daughter cells. Epigenetics is an essential part of controlling the development and variation of a single cell. ncRNAs have a role in epigenetic regulation in CRC, which will be discussed in this review in the context of DNA methylation and histone modifications. A greater survival rate for CRC patients might be achieved by addressing epigenetic mediators, as the authors show. In this review, they aim to thoroughly examine the role of epigenetics in the prognosis, diagnosis and treatment of CRC.


Colorectal cancer (CRC) is one of the leading causes of cancer-related death around the world. There are different methods and strategies to diagnose and treat CRC, but there are some hurdles in the prediction and early diagnosis of this disease. Epigenetics is considered to be alterations occurring in the chromosome rather than in the DNA sequence without changing its biochemical identity. Nowadays, it appears that epigenetics plays a critical role in overcoming some obstacles in the diagnosis and treatment of CRC. Targeting epigenetic mediators may provide a higher survival rate for CRC patients. In this review, the authors predict that combinational therapy (including epigenetics) may be one of the best options for most cancers, including CRC.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Metilação de DNA , Código das Histonas , Humanos , Prognóstico
5.
Iran J Pharm Res ; 20(3): 506-515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34904004

RESUMO

Methotrexate (MTX) is one of the most effective therapeutics to treat different types of solid tumors; however, it suffers low permeability limiting its bioavailability and cellular uptake. To tackle this, we aim to design and fabricate different types of cell-penetrating peptides (CPPs) to improve the intracellular uptake of MTX without causing any immunogenic response. CPPs were synthesized by the solid-phase peptide synthesis method. Peptide-MTX conjugates were prepared via covalent binding of peptide and drug molecule. CPPs and peptide-E8 nanoparticles were characterized using zeta-sizer and scanning electron microscopy. Cytotoxicity of CPPs and peptide-MTX conjugates was evaluated by MTT assay. An enzyme-linked immunosorbent assay was employed to assess the IL-6 and TNF-α cytokine release profile. Amongst all sequences, W4R4-MTX possessed the highest loading efficiency (97%) and drug to peptide percentage (24.02%). The lowest loading efficiency (36%) and drug to peptide percentage (8.76%) were seen for NGRWK-MTX conjugates. The NGRWR peptide and NGRWR-E8 nanoparticles had acceptable size (~100 nm) with spherical and rod-like structures, respectively. The selected CPPs and peptide-MTX conjugates did not show any cytotoxicity or immunogenicity. The fabricated peptides are represented as promising carriers to improve the intracellular delivery of MTX to cancer cells with low immunogenic and cytotoxic effects on normal cells.

6.
Iran J Basic Med Sci ; 24(3): 383-390, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33995950

RESUMO

OBJECTIVES: Doxorubicin (Dox) is one of the most well-known chemotherapeutics that are commonly applied for a wide range of cancer treatments. However, in most cases, efflux pumps like P-glycoprotein (P-gp), expel the taken drugs out of the cell and decrease the Dox bioavailability. Expression of P-gp is associated with elevated mRNA expression of the ATP-binding cassette B1 (ABCB1) gene. MATERIALS AND METHODS: In the current study, different sequences of cell-penetrating peptides (CPPs) containing tryptophan, lysine, and arginine and their nano-complexes were synthesized and their impact on the expression and activity of the ABCB1 gene was evaluated in the A549 lung carcinoma cell line. Furthermore, the cellular uptake of designed CPPs in the A549 cell line was assessed. RESULTS: The designed peptides, including [W4K4], [WR]3-QGR, R10, and K10 increased Dox cytotoxicity after 48 hr. Furthermore, arginine-rich peptides showed higher cellular uptake. Rhodamin123 accumulation studies illustrated that all the obtained peptides could successfully inhibit the P-gp pump. The designed peptides inhibited the ABCB1 gene expression, of which, [W4K4] resulted in the lowest expression ratio. CONCLUSION: [W4K4], [WR]3-QGR, R10, and K10 could successfully increase the Dox cytotoxicity by decreasing the efflux pump gene expression.

7.
Stem Cell Res Ther ; 11(1): 396, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928295

RESUMO

BACKGROUND: Regenerative medicine plays a major role in biomedicine, and given the ever-expanding boundaries of this knowledge, numerous ethical considerations have been raised. MAIN TEXT: Rapid advancement of regenerative medicine science and technology in Iran, emerged the Iranian National Committee for Ethics in Biomedical Research to develop a comprehensive national ethical guideline. Therefore, the present ethical guideline which comprises eleven chapters was developed in 2019 and approved in early 2020. The titles of these chapters were selected based on the ethical considerations of various aspects of the field of regenerative medicine: (1) ethical principles of research on stem cells and regenerative medicine; (2) ethical considerations for research on stem cells (embryonic stem cells, epiblast stem cells, tissue-specific stem cells, stem cells derived from transdifferentiation, induced pluripotent stem cells [iPSCs], germline pluripotent stem cells, germline stem cells, and somatic cell nuclear transfer [SCNT] stem cells); (3) ethical considerations for research on somatic cells in regenerative medicine (adult somatic cells, fetal tissue somatic cells, and somatic cells derived from pregnancy products [other than fetus]); (4) ethical considerations for research on gametes in regenerative medicine; (5) ethical considerations for research related to genetic manipulation (human and animal) in regenerative medicine; (6) ethical considerations for research on tissue engineering in regenerative medicine; (7) ethical considerations for pre-clinical studies in regenerative medicine; (8) ethical considerations for clinical trials in regenerative medicine; (9) ethical considerations for stem cells and regenerative medicine bio-banks; (10) ethical considerations for privacy and confidentiality; and (11) ethical considerations for obtaining informed consent. CONCLUSION: This article discusses the process of developing the present ethical guidelines and its practical points. We hope that it can play an important worldwide role in advancing ethics of research on stem cells and regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Células-Tronco Embrionárias , Feminino , Humanos , Irã (Geográfico) , Gravidez , Medicina Regenerativa
8.
Artif Cells Nanomed Biotechnol ; 46(sup1): 91-103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29258339

RESUMO

PURPOSE: To assess the effect of "N-Acetylation and C-Amidation" on the cellular uptake, cytotoxicity and performance of amphiphilic cell penetrating peptides (CPP) loaded with methotrexate (MTX). METHODS: Several CPPs were synthesized by solid phase peptide synthesis method. Some of these sequences were modified with pyroglutamic acid at N-terminus and benzylamine or memantine at C-terminus. The resultant nanomaterials were prepared due to the physical linkage between CPPs and MTX. The internalization and cytotoxicity of both CPP-MTX bioconjugates and unmodified CPPs against MCF-7 human breast adenocarcinoma cells was evaluated. RESULTS: N-l and C-terminal modification did not alter the toxicity of CPPs. Physical linkage of CPPs with MTX resulted in a lower drug loading efficiency in comparison with chemically conjugated CPP-MTX bio-conjugates. Both nano-complexes increase the toxic effect of MTX on MCF-7 cells. Furthermore, N- and C-terminal modification may cause a tangible reduction in cellular uptake of CPPs. CONCLUSION: In conclusion, it was shown that cytotoxicity of modified peptides which were physically linked with MTX, considerably higher than both physically loaded unmodified peptides and chemically conjugated peptides with MTX. Also, cell internalization was reduced after peptide end-protection. These findings confirmed the effectiveness of N- and C-terminal modifications on cell viability and CPPs internalization.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Acetilação , Amidas/química , Sequência de Aminoácidos , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/toxicidade , Portadores de Fármacos/toxicidade , Meia-Vida , Humanos , Células MCF-7 , Metotrexato/química , Relação Estrutura-Atividade
9.
Biomed Pharmacother ; 83: 1365-1378, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27580456

RESUMO

Nanotechnology increasingly plays a significant role in modern medicine development. The clear benefits of using nanomaterials in various biomedical applications are often challenged by concerns about the lack of adequate data regarding their toxicity. Two decades of nanotoxicology research have shown that the interactions between nanoparticles (NPs) and biosystem are remarkably complex. This complexity derives from NPs' ability to bind and interact with biological cells and change their surface characteristics. One area of interest involves the interactions between NPs and the immune component. Immune system's function in the maintenance of tissue homeostasis is to protect the host from unfamiliar agents. This is done through effective surveillance and elimination of foreign substances and abnormal self cells from the body. Research shows that nanomaterials can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface properties. NP size, shape, composition, protein binding and administration routes seem to be the main factors that contribute to the interactions of NPs with the immune system. In the present article, we focus on the relationship between effective physiochemical properties of NPs and their immunogenic effects. In addition, we review more details about immunological responses of different types of NPs. Understanding the interactions of nanomaterials with the immune system is essential for the engineering of new NP-based systems for medical applications.


Assuntos
Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Modelos Teóricos , Nanopartículas/metabolismo , Animais , Humanos , Sistema Imunitário/efeitos dos fármacos , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Nanopartículas/administração & dosagem
10.
Expert Opin Drug Metab Toxicol ; 12(9): 1021-33, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27267126

RESUMO

INTRODUCTION: The discussion about cancer treatment has a long history. Chemotherapy, one of the promising approaches in cancer therapy, is limited in the clinic as plenty of factors evolve and prevent appropriate therapeutic response to drugs. Multi-drug resistance (MDR), which is mostly P-glycoprotein-mediated, is described as the most well-known impediment in this contribution. It extrudes several agents out of cells, arising MDR and decreasing the bioavailability of drugs. Hence, cancer cells become insensitive to chemotherapy. AREAS COVERED: Many agents have been developed to reverse MDR, but it is difficult to deliver them into cancer sites and cancer cells. The emerging nano-based drug delivery systems have been more effective to overcome P-glycoprotein-mediated MDR by increasing the intracellular delivery of these agents. Here, we represent systems including siRNA-targeted inhibition of P-gp, monoclonal antibodies, natural extracts, conventional inhibitors, hard nanoparticles and soft nanoparticles as delivery systems in addition to a novel approach applying cell penetrating peptides. EXPERT OPINION: Overcoming cancer drug resistance using innovative nanotechnology is being increasingly used and developed. Among resistance mechanisms, drug efflux transporter inhibitors and MDR gene expression silencing are among the those being investigated. In the near future, it seems some of these nanomedical approaches might become the mainstay of effective treatment of important human conditions like cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Humanos , Nanopartículas , Nanotecnologia/métodos , Neoplasias/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA