Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591415

RESUMO

This paper deals with the analysis of TRIP steel HCT690 deformation behaviour. The mechanical properties and deformation characteristics of the tested material are determined using selected material tests and tests that consider the required stress states used to define the yield criterion boundary condition and subsequent deformation behaviour in the region of severe plastic deformation. The measured data are subsequently implemented in the numerical simulation of sheet metal forming, where they are used as input data for the computational process in the form of a selected material model defining the yield criterion boundary and, furthermore, the material hardening law during deformation of the material. The chosen numerical simulation process corresponds to the sheet metal forming process, including the subsequent spring-back of the material, when the force does not affect the material. Furthermore, the influence of the chosen computational model and selected process parameters on the deformation and spring-back process of the material is evaluated. In addition to that, at the end of the paper, the results from the numerical simulation are compared with experimentally produced sheet stamping.

2.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570086

RESUMO

The nickel-iron-based alloy Inconel 718 is a progressive material with very good mechanical properties at elevated and lower temperatures. It is used both as wrought and cast alloys as well as material for additive manufacturing technologies. This is the reason why it has received so much attention, as supported by numerous publications. However, these are almost exclusively focused on a specific type of production and processing, and thus only report differences in the mechanical properties between samples prepared by different technologies. Therefore, the major aim of this research was to show how the structure and mechanical properties differ between samples produced by conventional production (wrought alloy) and additively manufactured SLM (Selective Laser Melting). It is shown that by applying appropriate heat treatment, similar strength properties at room and elevated temperatures can be achieved for SLM samples as for wrought samples. In addition, the mechanical properties are also tested up to a temperature of 900 °C, in contrast to the results published so far. Furthermore, it is proven that the microstructures of the wrought (here rolled) and SLM alloys differ significantly both in terms of grain shape and the size and distribution of precipitates.

3.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984136

RESUMO

Concerning the increasingly widespread utilization of the finite element method (FEM), the concept of the so-called virtual factory is also gaining ground, and not only in the engineering industry. This approach does not use numerical simulations of individual production technologies separately but treats the entire production process as a chain of interrelated technologies. Thus, the output data from one technology is taken as input data for the following technology. The resulting thermal and mechanical effects are then not only dealt with within one technology but always comprehensively within the production process. In the consideration of the loading and subsequent service lives of manufactured components, values of residual stresses are one of the very important characteristics. For these reasons, this paper deals with the effect of residual stresses' magnitude and distribution during the formation and the final springback of the seamed pipe end section with and without respect to the influence of the preceding welding. The resulting residual stress values from numerical simulations are subsequently compared with the actual values of residual stresses experimentally measured using X-ray diffraction.

4.
Materials (Basel) ; 14(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500901

RESUMO

The paper deals with research related to the production of metal cellular aluminium systems, in which production is based on the application of sodium chloride particles. In this paper, the properties of porous aluminium materials that were produced by an unconventional method-by pressing salt particles into the melt of aluminium alloy-are described. The new methodology was developed and verified for the production of these materials. The main feature of this methodology is a hydraulic forming press and a simple-shaped foundry mould. For these purposes, four different groups of sodium chloride particle sizes (1 to 3, 3 to 5, 5 to 7 and 8 to 10 mm) were applied. The preferred aluminium foundry alloy (AlSi12) was used to produce the porous aluminium samples. Based upon this developed methodology, samples of porous aluminium materials were produced and analysed. Their weight and volume were monitored, their density and relative density were calculated, and their porosity was determined. In addition, the porosity of samples and continuity of their air cells were monitored as well. An industrial computed tomograph and a scanning electron microscope were applied for these purposes.

5.
Interact Cardiovasc Thorac Surg ; 26(5): 777-782, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325026

RESUMO

OBJECTIVES: The number of turns at the end of a wire closure is not described or discussed in any cardiosurgical guidelines. The hands-on experience of the surgeon plays a significant role. The aim of this work was to clarify the relationship between the number of turns of the suture and the resulting strength of the sternal fixation. METHODS: The study was performed in 2 independent steps. The first step was a finite element simulation, where the stress and strain distribution of the sternal fixation was observed. The second step included the experimental set-up and the statistical evaluation of the results. RESULTS: Our study showed that the failure force rose linearly as the number of turns increased. The lowest average measured force was 370 N (3 turns); the highest was 430 N (7 turns). The failure modes were either untwisting of the wires or rupture of the closure, which is controlled by the number of turns. As the number of turns increases, superficial cracks can occur. CONCLUSIONS: Based on our results, the 5-turn option is the best solution for the closure. The failure force is still double the value reported in the literature, so there is a high safety margin for failure. The failure mode is untwisting; hence, no unexpected fracture can occur, and there is still an elastic core in the cross-section of the wire.


Assuntos
Fios Ortopédicos , Esterno/cirurgia , Técnicas de Sutura , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Modelos Teóricos , Maleabilidade , Suturas , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA