Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
BioDrugs ; 38(5): 657-680, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39177875

RESUMO

BACKGROUND: Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE: To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS: A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS: Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS: Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.


Assuntos
Terapia Genética , Doenças por Armazenamento dos Lisossomos , Nanopartículas , Humanos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/genética , Terapia Genética/métodos , Animais , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Sistemas CRISPR-Cas , Inativação Gênica , Sistemas de Liberação de Medicamentos , Lipossomos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39205651

RESUMO

BACKGROUND: Fosfomycin is an antibiotic extensively used to treat uncomplicated urinary tract infections in women, and it is available in different salts and formulations. The European Medicines Agency (EMA) recommends further studies to characterize the pharmacokinetics of fosfomycin calcium for oral administration and to justify its dosage recommendation. OBJECTIVES: A population pharmacokinetic model of fosfomycin calcium was developed after oral administration to healthy women. METHODS: A clinical trial (a randomized, open-label, bioavailability study of single and multiple doses of 1000 mg capsules, single dose of 500 mg capsule and single dose of 250 mg/5 mL suspension of oral fosfomycin calcium under fasted conditions in healthy women volunteers, Code: PD7522.22, EudraCT: 2020-001664-28) was carried out at the Clinical Trial Unit, Araba University Hospital (Vitoria-Gasteiz, Spain). Twenty-four healthy women were included in the study, and plasma samples were collected at different times over a period of 24 h. The concentration-time data of fosfomycin in plasma were modelled by a population approach using a nonlinear mixed-effects modelling implemented by NONMEM 7.4 (ICON Clinical Research LLC, North Wales, PA, USA). RESULTS: The pharmacokinetics of fosfomycin was best described by a two-compartment model. Creatinine clearance and body weight were identified as covariates for fosfomycin clearance and volume of distribution, respectively. CONCLUSIONS: This study provides relevant information on the pharmacokinetic profile of fosfomycin in women after oral administration as calcium salt. This population model may be very useful for establishing dosage recommendations of fosfomycin calcium to treat urinary tract infections in women.

3.
Integr Pharm Res Pract ; 13: 115-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101006

RESUMO

Purpose: Additional monitoring (AM) medicines include (i) medicines containing a new active substance; (ii) biological medicines; (iii) medicines with conditional approval or authorized in special situations; (iv) medicines which require further studies; (v) medicines that have specific requirements regarding the reporting of suspected adverse drug reactions (ADRs). When AM medicines are marketed, their most common ADRs are known, but safety information is limited because relatively rare ADRs are often not detected in clinical trials. Their AM status warrants real-world studies to identify other safety issues; however, such studies are lacking. Correct use and adherence to dosage regimen by patients are key factors for the evaluation of the safety and efficacy of medicines. The objective of this work was assessing the impact on safety, adherence, use and knowledge (U&K) about medicines and patient's quality of life (QOL), of community pharmacist (CP)-led interventions in a new service focused on AM medicines targeted at three prevalent chronic diseases: diabetes mellitus type 2, chronic obstructive pulmonary disease and cardiovascular disease. Patients and Methods: A prospective interventional cohort study was conducted with a 6-month follow-up in 27 community pharmacies (145 patients). Safety, adherence to treatment, patient U&K and QOL were assessed at follow-up visits (months 0, 3 and 6). Results: The number of detected ADRs was 163 with 41 patients referred to the doctor. At baseline, 24.1% of the patients were non-adherent, mainly due to unintentional causes. After six months and 130 interventions by CPs on adherence, a significant reduction to lower than 5.8% was achieved. The inadequate U&K of medicines also decreased, from 47.6% to 7.9% after 182 interventions. Also, the patient's QOL improved. Conclusion: A new patient-centered pharmacy service provides some evidence on the important role of CP in assisting the proper and safe use of AM medicines, improving patient health outcomes.

4.
Antibiotics (Basel) ; 13(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927219

RESUMO

Stenotrophomonas maltophilia is an opportunistic, multidrug-resistant non-fermentative Gram-negative bacillus, posing a significant challenge in clinical treatment due to its numerous intrinsic and acquired resistance mechanisms. This study aimed to evaluate the adequacy of antibiotics used for the treatment of S. maltophilia infections in critically ill patients using a pharmacokinetic/pharmacodynamic (PK/PD) approach. The antibiotics studied included cotrimoxazole, levofloxacin, minocycline, tigecycline, cefiderocol, and the new combination aztreonam/avibactam, which is not yet approved. By Monte Carlo simulations, the probability of target attainment (PTA), the PK/PD breakpoints, and the cumulative fraction of response (CFR) were estimated. PK parameters and MIC distributions were sourced from the literature, the European Committee on Antimicrobial Susceptibility Testing (EUCAST), and the SENTRY Antimicrobial Surveillance Program collection. Cefiderocol 2 g q8h, minocycline 200 mg q12h, tigecycline 100 mg q12h, and aztreonam/avibactam 1500/500 mg q6h were the best options to treat empirically infections due to S. maltophilia. Cotrimoxazole provided a higher probability of treatment success for the U.S. isolates than for European isolates. For all antibiotics, discrepancies between the PK/PD breakpoints and the clinical breakpoints defined by EUCAST (or the ECOFF) and CLSI were detected.

5.
Drug Deliv Transl Res ; 14(10): 2615-2628, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38587758

RESUMO

Fabry disease (FD) results from a lack of activity of the lysosomal enzyme α-Galactosidase A (α-Gal A), leading to the accumulation of glycosphingolipids in several different cell types. Protein supplementation by pDNA or mRNA delivery presents a promising strategy to tackle the underlying genetic defect in FD. Protein-coding nucleic acids in FD can be either delivered to the most affected sites by the disease, including heart, kidney and brain, or to specialized organs that can act as a production factory of the enzyme, such as the liver. Lipid-based systems are currently at the top of the ranking of non-viral nucleic acid delivery systems, and their versatility allows the linking to the surface of a wide range of molecules to control their biodistribution after intravenous administration. This systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement guidelines and provides an overview and discussion of the targeting ligands that have been employed so far to actively vectorize intravenously administered non-viral vectors based on lipid carriers to clinically relevant organs in the treatment of FD, for protein-coding nucleic acid (pDNA and mRNA) supplementation. Among the thirty-two studies included, the majority focus on targeting the liver and brain. The targeting of the heart has been reported to a lesser degree, whereas no articles addressing kidney-targeting have been recorded. Although a great effort has been made to develop organ-specific nucleic acid delivery systems, the design of active-targeted carriers with high quality, good clinical translation, and large-scale manufacturing capacity is still challenging.


Assuntos
Doença de Fabry , Lipídeos , Doença de Fabry/terapia , Doença de Fabry/tratamento farmacológico , Humanos , Animais , Lipídeos/química , Lipídeos/administração & dosagem , alfa-Galactosidase/administração & dosagem , RNA Mensageiro/administração & dosagem , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Sistemas de Liberação de Medicamentos
6.
Eur J Clin Microbiol Infect Dis ; 43(5): 885-893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460030

RESUMO

PURPOSE: The aim of this study was to to compare the antimicrobial resistance rate and its relationship with the antibiotic consumption in two separate Intensive Care Units (ICUs) of the same hospital, one with and other without selective decontamination of the digestive tract (SDD). METHODS: We performed a retrospective study in the two ICUs of the Araba University Hospital. Trauma and neurosurgical patients are admitted to the SDD-ICU, and general digestive surgery patients go to the no SDD-ICU. From 2014 to 2018 we analyzed the number of isolates, and the bacterial resistance trends of 47 antimicrobial-microorganism combinations. Additionally, antimicrobial consumption was estimated in both ICUs. Resistance rates were also compared with those reported in ENVIN-HELICS Spanish national registry. RESULTS: In the ICU with SDD protocol, there was a significant decrease in the resistance of E. coli to amoxicillin/clavulanic acid and in the resistance of E. faecalis to high concentration of gentamycin and high concentration of streptomycin. A significant increase of resistance of Staphylococcus coagulasa negative (CoNS) to linezolid in the no SDD-ICU was also detected. Overall, the level of resistance in the SDD-ICU was lower or of the same order than in the ICU without SDD and that reported in the Spanish national registry. CONCLUSIONS: SDD had neither a clinically relevant impact on emergence and spread of resistance, nor in the overall systemic antimicrobial use. The patient type rather than the SDD protocol showed to condition the ecology and therefore, the resistance rate in the ICUs.


Assuntos
Antibacterianos , Descontaminação , Farmacorresistência Bacteriana , Trato Gastrointestinal , Unidades de Terapia Intensiva , Centros de Atenção Terciária , Humanos , Estudos Retrospectivos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Descontaminação/métodos , Trato Gastrointestinal/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Testes de Sensibilidade Microbiana , Espanha
7.
Pharmaceutics ; 15(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514122

RESUMO

Substrate reduction therapy (SRT) has been proposed as a new gene therapy for Fabry disease (FD) to prevent the formation of globotriaosylceramide (Gb3). Nanomedicines containing different siRNA targeted to Gb3 synthase (Gb3S) were designed. Formulation factors, such as the composition, solid lipid nanoparticles (SLNs) preparation method and the incorporation of different ligands, such as gold nanoparticles (GNs), protamine (P) and polysaccharides, were evaluated. The new siRNA-golden LNPs were efficiently internalized in an FD cell model (IMFE-1), with GNs detected in the cytoplasm and in the nucleus. Silencing efficacy (measured by RT-qPCR) depended on the final composition and method of preparation, with silencing rates up to 90% (expressed as the reduction in Gb3S-mRNA). GNs conferred a higher system efficacy and stability without compromising cell viability and hemocompatibility. Immunocytochemistry assays confirmed Gb3S silencing for at least 15 days with the most effective formulations. Overall, these results highlight the potential of the new siRNA-golden LNP system as a promising nanomedicine to address FD by specific SRT.

8.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111669

RESUMO

Urinary tract infections (UTIs) are extremely common and a major driver for the use of antimicrobials. Calcium fosfomycin is an old antibiotic indicated for the treatment of UTIs; however, data about its urine pharmacokinetic profile are scarce. In this work, we have evaluated the pharmacokinetics of fosfomycin from urine concentrations after oral administration of calcium fosfomycin to healthy women. Moreover, we have assessed, by pharmacokinetic/pharmacodynamic (PK/PD) analysis and Monte Carlo simulations, its effectiveness considering the susceptibility profile of Escherichia coli, the main pathogen involved in UTIs. The accumulated fraction of fosfomycin excreted in urine was around 18%, consistent with its low oral bioavailability and its almost exclusively renal clearance by glomerular filtration as unchanged drug. PK/PD breakpoints resulted to be 8, 16, and 32 mg/L for a single dose of 500 mg, a single dose of 1000 mg, and 1000 mg q8h for 3 days, respectively. For empiric treatment, the estimated probability of treatment success was very high (>95%) with the three dose regimens, considering the susceptibility profile of E. coli reported by EUCAST. Our results show that oral calcium fosfomycin at a dose level of 1000 mg every 8 h provides urine concentrations sufficient to ensure efficacy for the treatment of UTIs in women.

9.
Blood Purif ; 52(5): 464-473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858039

RESUMO

INTRODUCTION: Continuous renal replacement therapies (CRRTs) are frequently used in critically ill patients; however, there are scarce in vitro and in vivo studies showing the extracorporeal elimination of ceftaroline and avibactam. The aim of this study was to assess, through an in vitro model, the extracorporeal elimination of ceftaroline and avibactam by continuous veno-venous hemofiltration (CVVH), continuous veno-venous hemodiafiltration (CVVHDF), and continuous veno-venous hemodialysis (CVVHD), using a polysulfone hemofilter. METHODS: Simulated in vitro experiments were performed using a multiFiltrate machine with a 1.4 m2 Ultraflux® AV600S polysulfone hemofilter. Isofundin® without or with bovine serum albumin was circulated as vehicle for ceftaroline or avibactam. Pre-filter, post-filter, and effluent samples were taken over a period of 60 min, and they were immediately stored at 4°C until processed in the same day. The quantification of ceftaroline and avibactam in the samples was performed by high-performance liquid chromatography with ultraviolet detection. Protein binding, extraction coefficient (EC), and extracorporeal clearance (CLCRRT) were calculated. RESULTS: The elimination of both ceftaroline and avibactam during the three extracorporeal modalities followed first-order pharmacokinetics. Regardless of the CRRT technique, EC values for both molecules were around 1, similar to the unbound fraction of avibactam (0.96) and higher than the unbound fraction of ceftaroline (0.79). CLCRRT of ceftaroline ranged from 15.63 to 17.66 mL/min when CVVH and CVVHD were used with a flow rate of 1,000 mL/h, and from 29.25 to 32.95 mL/min for the CVVHDF modality with a flow rate of 2,000 mL/h. For avibactam, CLCRRT ranged from 15.07 to 18.82 mL/min for CVVH and CVVHD, and from 33.74 to 34.13 mL/min for CVVHDF. DISCUSSION: Avibactam and ceftaroline are extensively removed through the polysulfone membrane, and a dose adjustment may be recommended for patients under CRRT to ensure pharmacodynamic target achievement.


Assuntos
Terapia de Substituição Renal Contínua , Hemofiltração , Humanos , Hemofiltração/métodos , Diálise Renal , Ceftarolina
10.
Int Rev Cell Mol Biol ; 372: 207-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064265

RESUMO

Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.


Assuntos
COVID-19 , Nanopartículas , Neoplasias , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Lipídeos , Lipossomos , Neoplasias/terapia , RNA Mensageiro/genética , Tecnologia
11.
Nanomaterials (Basel) ; 12(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889565

RESUMO

Gene supplementation therapy with plasmid DNA (pDNA) represents one of the most promising strategies for the treatment of monogenic diseases such as Fabry disease (FD). In the present work, we developed a solid lipid nanoparticles (SLN)-based non-viral vector with a size below 100 nm, and decorated with galactomannan (GM) to target the liver as an α-Galactosidase A (α-Gal A) production factory. After the physicochemical characterization of the GM-SLN vector, cellular uptake, transfection efficacy and capacity to increase α-Gal A activity were evaluated in vitro in a liver cell line (Hep G2) and in vivo in an animal model of FD. The vector showed efficient internalization and it was highly efficient in promoting protein synthesis in Hep G2 cells. Additionally, the vector did not show relevant agglutination of erythrocytes and lacked hemolytic activity. After the systemic administration to Fabry mice, it achieved clinically relevant α-Gal A activity levels in plasma, liver, and other organs, importantly in heart and kidneys, two of the most damaged organs in FD. This work shows the potential application of GM-decorated lipidic nanocarries for the treatment of FD by pDNA-based gene augmentation.

12.
J Intensive Care ; 10(1): 21, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449037

RESUMO

BACKGROUND: Levetiracetam pharmacokinetics is extensively altered in critically ill patients with augmented renal clearance (ARC). Consequently, the dosage regimens commonly used in clinical practice may not be sufficient to achieve target plasma concentrations. The aim of this study is to propose alternative dosage regimens able to achieve target concentrations in this population. Furthermore, the feasibility of the proposed dosing regimens will be discussed from a clinical point of view. METHODS: Different dosage regimens for levetiracetam were evaluated in critically ill patients with ARC. Monte Carlo simulations were conducted with extended or continuous infusions and/or high drug doses using a previously developed population pharmacokinetic model. To assess the clinical feasibility of the proposed dosages, we carried out a literature search to evaluate the information on toxicity and efficacy of continuous administration or high doses, as well as the post-dilution stability of levetiracetam. RESULTS: According to the simulations, target concentrations in patients with CrCl of 160 or 200 mL/min can be achieved with the 3000 mg daily dose by prolonging the infusion time of levetiracetam. For patients with CrCl of 240 mL/min, it would be necessary to administer doses higher than the maximum recommended. Available evidence suggests that levetiracetam administration in continuous infusion or at higher doses than those approved seems to be safe. It would be desirable to re-examinate the current recommendations about drug stability and to achieve a consensus in this issue. CONCLUSIONS: Conventional dosage regimens of levetiracetam (500-1500 mg twice daily in a short infusion) do not allow obtaining drug plasma concentrations among the defined target in critically ill patients with ARC. Therefore, new dosing guidelines with specific recommendations for patients in this subpopulation are needed. This study proposes new dosages for levetiracetam, including extended (4 or 6 h) infusions, continuous infusions or the administration of doses higher than the recommended in the summary of product characteristics (> 3000 mg). These new dosage recommendations take into account biopharmaceutical and pharmacokinetic aspects and meet feasibility criteria, which allow them to be transferred to the clinical environment with safety and efficacy. Nevertheless, further clinical studies are needed to confirm these results.

13.
Pharmaceutics ; 13(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34834314

RESUMO

Pseudomonas aeruginosa remains one of the major causes of healthcare-associated infection in Europe; in 2019, 12.5% of invasive isolates of P. aeruginosa in Spain presented combined resistance to ≥3 antimicrobial groups. The Spanish nationwide survey on P. aeruginosa antimicrobial resistance mechanisms and molecular epidemiology was published in 2019. Based on the information from this survey, the objective of this work was to analyze the overall antimicrobial activity of the antipseudomonal antibiotics considering pharmacokinetic/pharmacodynamic (PK/PD) analysis. The role of PK/PD to prevent or minimize resistance emergence was also evaluated. A 10,000-subject Monte Carlo simulation was executed to calculate the probability of target attainment (PTA) and the cumulative fraction of response (CFR) considering the minimum inhibitory concentration (MIC) distribution of bacteria isolated in ICU or medical wards, and distinguishing between sample types (respiratory and non-respiratory). Ceftazidime/avibactam followed by ceftolozane/tazobactam and colistin, categorized as the Reserve by the Access, Watch, Reserve (AWaRe) classification of the World Health Organization, were the most active antimicrobials, with differences depending on the admission service, sample type, and dose regimen. Discrepancies between EUCAST-susceptibility breakpoints for P. aeruginosa and those estimated by PK/PD analysis were detected. Only standard doses of ceftazidime/avibactam and ceftolozane/tazobactam provided drug concentrations associated with resistance suppression.

14.
Pharmaceutics ; 13(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683983

RESUMO

Levetiracetam is a broad-spectrum antiepileptic drug commonly used in intensive care units (ICUs). The objective of this study is to evaluate the adequacy of levetiracetam dosing in patients with normal or augmented renal clearance (ARC) admitted to the ICU by population modelling and simulation. A multicentre prospective study including twenty-seven critically ill patients with urinary creatinine clearance (CrCl) > 50 mL/min and treated with levetiracetam was developed. Levetiracetam plasma concentrations were best described by a two-compartment model. The parameter estimates and relative standard errors (%) were clearance (CL) 3.5 L/h (9%), central volume of distribution (V1) 20.7 L (18%), intercompartmental clearance 31.9 L/h (22%), and peripheral volume of distribution 33.5 L (13%). Interindividual variability estimates were, for the CL, 32.7% (21%) and, for V1, 56.1% (29%). The CrCl showed significant influence over CL. Simulations showed that the administration of at least 500 mg every 8 h or 1000 mg every 12 h are needed in patients with normal renal function. Higher doses (1500 or 2000 mg, every 8 h) are needed in patients with ARC. Critically ill patients with normal or ARC treated with levetiracetam could be at high risk of being underdosed.

15.
Pharmaceutics ; 13(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34575548

RESUMO

The anti-inflammatory cytokine Interleukin-10 (IL-10) is considered an efficient treatment for corneal inflammation, in spite of its short half-life and poor eye bioavailability. In the present work, mRNA-based nanomedicinal products based on solid lipid nanoparticles (SLNs) were developed in order to produce IL-10 to treat corneal inflammation. mRNA encoding green fluorescent protein (GFP) or human IL-10 was complexed with different SLNs and ligands. After, physicochemical characterization, transfection efficacy, intracellular disposition, cellular uptake and IL-10 expression of the nanosystems were evaluated in vitro in human corneal epithelial (HCE-2) cells. Energy-dependent mechanisms favoured HCE-2 transfection, whereas protein production was influenced by energy-independent uptake mechanisms. Nanovectors with a mean particle size between 94 and 348 nm and a positive superficial charge were formulated as eye drops containing 1% (w/v) of polyvinyl alcohol (PVA) with 7.1-7.5 pH. After three days of topical administration to mice, all formulations produced GFP in the corneal epithelium of mice. SLNs allowed the obtaining of a higher transfection efficiency than naked mRNA. All formulations produce IL-10, and the interleukin was even observed in the deeper layers of the epithelium of mice depending on the formulation. This work shows the potential application of mRNA-SLN-based nanosystems to address corneal inflammation by gene augmentation therapy.

16.
Pharmaceutics ; 13(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205113

RESUMO

Pharmacokinetic/pharmacodynamic (PK/PD) analysis has proved to be very useful to establish rational dosage regimens of antimicrobial agents in human and veterinary medicine. Actually, PK/PD studies are included in the European Medicines Agency (EMA) guidelines for the evaluation of medicinal products. The PK/PD approach implies the use of in vitro, ex vivo, and in vivo models, as well as mathematical models to describe the relationship between the kinetics and the dynamic to determine the optimal dosing regimens of antimicrobials, but also to establish susceptibility breakpoints, and prevention of resistance. The final goal is to optimize therapy in order to maximize efficacy and minimize side effects and emergence of resistance. In this review, we revise the PK/PD principles and the models to investigate the relationship between the PK and the PD of antibiotics. Additionally, we highlight the outstanding role of the PK/PD analysis at different levels, from the development and evaluation of new antibiotics to the optimization of the dosage regimens of currently available drugs, both for human and animal use.

17.
Pharmaceutics ; 13(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202113

RESUMO

This study was conducted to develop a rapid, simple and reproducible method for the quantification of ceftaroline in plasma samples by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Sample processing consisted of methanol precipitation and then, after centrifugation, the supernatant was injected into the HPLC system, working in isocratic mode. Ceftaroline was detected at 238 nm at a short acquisition time (less than 5 min). The calibration curve was linear over the concentration range from 0.25 to 40 µg/mL, and the method appeared to be selective, precise and accurate. Ceftaroline in plasma samples was stable at -80 °C for at least 3 months. The method was successfully applied to characterize the pharmacokinetic profile of ceftaroline in two critically ill patients and to evaluate whether the pharmacokinetic/pharmacodynamic (PK/PD) target was reached or not with the dose regimen administered.

18.
Eur J Clin Microbiol Infect Dis ; 40(10): 2145-2152, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33942165

RESUMO

The objective of our study was to evaluate by pharmacokinetic/pharmacodynamic (PK/PD) analysis, if the antimicrobials used for the treatment of invasive pneumococcal disease (IPD) in adults, including meningitis, are adequate considering the susceptibility profile of S. pneumoniae in Spain after the implantation of PVC13 vaccine. Pharmacokinetic parameters of benzylpenicillin and cefotaxime were obtained from the literature, and susceptibility data of invasive S. pneumoniae strains recovered in 2017 (post-PCV13 vaccination period) were provided by the Public Health Regional Laboratory of Madrid. We have also studied levofloxacin because it is used to treat pneumococcal pneumonia previously to be diagnosed as bacteremic pneumonia. Monte Carlo simulation was used to estimate the probability of target attainment (PTA) and the cumulative fraction of response (CFR). All doses of benzylpenicillin except 2 mU q6h provide a high probability of treatment success for MIC values ≤ 1 mg/L; 4 mU q4h is even useful for MIC values up to 4 mg/L. This high dose, used for the treatment of meningitis, also provides high probability of treatment success for MIC ≤ 0.5 mg/L. At the susceptibility EUCAST breakpoint (≤ 0.5 mg/L), cefotaxime provides a high rate of PD target achievement, even at the lowest dose (1 g q8h). For meningitis, 2 g q6h ensures probabilities of target attainment ≥90% for MIC up to 1 mg/L. Our study confirms that after the implementation of PCV13 vaccine, the treatment with benzylpenicillin and cefotaxime provides high probability of the therapy success of IPD, including meningitis.


Assuntos
Antibacterianos/farmacocinética , Infecções Pneumocócicas/tratamento farmacológico , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/efeitos dos fármacos , Adulto , Antibacterianos/administração & dosagem , Cefotaxima/administração & dosagem , Ensaios Clínicos como Assunto , Humanos , Levofloxacino/administração & dosagem , Penicilina G/administração & dosagem , Infecções Pneumocócicas/microbiologia , Espanha , Streptococcus pneumoniae/fisiologia
19.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32636039

RESUMO

INTRODUCTION: In Europe, non-typeable H. influenzae (NTHi) is the leading cause of invasive H. influenzae disease in adults and is associated with high mortality. The goal of this study was to determine whether current antimicrobial treatments for H. influenzae infection in Spain are suitable based on their probability of achieving pharmacokinetic/pharmacodynamic (PK/PD) targets. METHODS: Pharmacokinetic parameters for the antibiotics studied (amoxicillin, amoxicillin/clavulanic acid, ampicillin, cefotaxime, ceftriaxone, imipenem and ciprofloxacin) and susceptibility data for H. influenzae were obtained from literature. A Monte Carlo simulation was used to estimate the probability of target attainment (PTA), defined as the probability that at least a specific value of a PK/PD index is achieved at a certain MIC, and the cumulative fraction of response (CFR), defined as the expected population PTA for a specific drug dose and a specific microorganism population. RESULTS: Regardless of dosing regimen, all antibiotics yielded CFR values of 100% or nearly 100% for all strains, including BL+, BL- and BLNAR, except amoxicillin and ampicillin for BL+. Thus, if an infection is caused by BL+ strains, treatment with amoxicillin and ampicillin has a high probability of failure (CFR≤8%). For standard doses of amoxicillin, amoxicillin/clavulanic acid and imipenem, PK/PD breakpoints were consistent with EUCAST clinical breakpoints. For the other antimicrobials, PK/PD breakpoints were higher than EUCAST clinical breakpoints. CONCLUSIONS: Our study confirms by PK/PD analysis that, with the antimicrobials used as empirical treatment of invasive H. influenzae disease, a high probability of therapeutic success can be expected.


Assuntos
Infecções por Haemophilus , Infecções Respiratórias , Adulto , Antibacterianos/uso terapêutico , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae , Humanos , Testes de Sensibilidade Microbiana
20.
Nanomaterials (Basel) ; 10(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093140

RESUMO

The use of messenger RNA (mRNA) in gene therapy is increasing in recent years, due to its unique features compared to plasmid DNA: Transient expression, no need to enter into the nucleus and no risk of insertional mutagenesis. Nevertheless, the clinical application of mRNA as a therapeutic tool is limited by its instability and ability to activate immune responses; hence, mRNA chemical modifications together with the design of suitable vehicles result essential. This manuscript includes a revision of the strategies employed to enhance in vitro transcribed (IVT) mRNA functionality and efficacy, including the optimization of its stability and translational efficiency, as well as the regulation of its immunostimulatory properties. An overview of the nanosystems designed to protect the mRNA and to overcome the intra and extracellular barriers for successful delivery is also included. Finally, the present and future applications of mRNA nanomedicines for immunization against infectious diseases and cancer, protein replacement, gene editing, and regenerative medicine are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA