Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mult Scler ; 30(3): 308-315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332747

RESUMO

BACKGROUND AND OBJECTIVE: Prior Epstein-Barr virus (EBV) infection is associated with an increased risk of pediatric-onset multiple sclerosis (POMS) and adult-onset multiple sclerosis (MS). It has been challenging to elucidate the biological mechanisms underlying this association. We examined the interactions between candidate human leukocyte antigen (HLA) and non-HLA variants and childhood EBV infection as it may provide mechanistic insights into EBV-associated MS. METHODS: Cases and controls were enrolled in the Environmental and Genetic Risk Factors for Pediatric MS study of the US Network of Pediatric MS Centers. Participants were categorized as seropositive and seronegative for EBV-viral capsid antigen (VCA). The association between prior EBV infection and having POMS was estimated with logistic regression. Interactions between EBV serostatus, major HLA MS risk factors, and non-HLA POMS risk variants associated with response to EBV infection were also evaluated with logistic regression. Models were adjusted for sex, age, genetic ancestry, and the mother's education. Additive interactions were calculated using relative risk due to interaction (RERI) and attributable proportions (APs). RESULTS: A total of 473 POMS cases and 702 controls contributed to the analyses. Anti-VCA seropositivity was significantly higher in POMS cases compared to controls (94.6% vs 60.7%, p < 0.001). There was evidence for additive interaction between childhood EBV infection and the presence of the HLA-DRB1*15 allele (RERI = 10.25, 95% confidence interval (CI) = 3.78 to 16.72; AP = 0.61, 95% CI = 0.47 to 0.75). There was evidence for multiplicative interaction (p < 0.05) between childhood EBV infection and the presence of DRB1*15 alleles (odds ratio (OR) = 3.43, 95% CI = 1.06 to 11.07). Among the pediatric MS variants also associated with EBV infection, we detected evidence for additive interaction (p = 0.02) between prior EBV infection and the presence of the GG genotype in risk variant (rs2255214) within CD86 (AP = 0.30, 95% CI = 0.03 to 0.58). CONCLUSION: We report evidence for interactions between childhood EBV infection and DRB1*15 and the GG genotype of CD86 POMS risk variant. Our results suggest an important role of antigen-presenting cells (APCs) in EBV-associated POMS risk.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Adulto , Criança , Humanos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Fatores de Risco , Cadeias HLA-DRB1/genética , Anticorpos
2.
Arthritis Rheumatol ; 76(4): 614-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38073021

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is an autoimmune disease resulting in debilitating clinical manifestations that vary in severity by race and ethnicity with a disproportionate burden in African American, Mestizo, and Asian populations compared with populations of European descent. Differences in global and local genetic ancestry may shed light on the underlying mechanisms contributing to these disparities, including increased prevalence of lupus nephritis, younger age of symptom onset, and presence of autoantibodies. METHODS: A total of 1,139 European, African American, and Mestizos patients with SLE were genotyped using the Affymetrix LAT1 World array. Global ancestry proportions were estimated using ADMIXTURE, and local ancestry was estimated using RFMIXv2.0. We investigated associations between lupus nephritis, age at onset, and autoantibody status with both global and local ancestry proportions within the Major Histocompatibility Complex region. RESULTS: Our results showed small effect sizes that did not meet the threshold for statistical significance for global or local ancestry proportions in either African American or Mestizo patients with SLE who presented with the clinical manifestations of interest compared with those who did not. CONCLUSION: These findings suggest that local genetic ancestry within the Major Histocompatibility Complex region is not a major contributor to these SLE manifestations among patients with SLE from admixed populations.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/genética , Predisposição Genética para Doença , Complexo Principal de Histocompatibilidade , Autoanticorpos/genética , Brancos
3.
J Neuroinflammation ; 20(1): 306, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115011

RESUMO

BACKGROUND: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS: The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS: Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS: FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.


Assuntos
Comportamento de Doença , Malária Cerebral , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Transdução de Sinais
4.
Sci Rep ; 13(1): 19526, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945689

RESUMO

Vascular congestion and coagulopathy have been shown to play a role in human and experimental cerebral malaria (eCM), but little is known about the role of microglia, or microglia-vascular interactions and hypercoagulation during disease progression in this fatal infection. Recent studies show microglia bind to fibrinogen, a glycoprotein involved in thrombosis. An eCM model of Plasmodium chabaudi infection in mice deficient in the regulatory cytokine IL-10 manifests neuropathology, including hypercoagulation with extensive fibrin(ogen) deposition and neuroinflammation. Intravital microscopy and immunofluorescence are applied to elucidate the role of microglia in eCM. Results show microgliosis and coagulopathy occur early in disease at 3 dpi (day post-infection), and both are exacerbated as disease progresses to 7dpi. Vessel associated microglia increase significantly at 7 dpi, and the expression of the microglial chemoattractant CCL5 (RANTES) is increased versus uninfected and localized with fibrin(ogen) in vessels. PLX3397 microglia depletion resulted in rapid behavioral decline, severe hypothermia, and greater increase in vascular coagulopathy. This study suggests that microglia play a prominent role in controlling infection-initiated coagulopathy and supports a model in which microglia play a protective role in cerebral malaria by migrating to and patrolling the cerebral vasculature, potentially regulating degree of coagulation during systemic inflammation.


Assuntos
Malária Cerebral , Camundongos , Humanos , Animais , Malária Cerebral/patologia , Microglia/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Fibrina/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697338

RESUMO

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Assuntos
Asma , Metilação de DNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Carcinogênese , Inflamação , Estações do Ano
6.
PLoS One ; 18(3): e0281891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862625

RESUMO

Heterogeneity in Sjögren's syndrome (SS), increasingly called Sjögren's disease, suggests the presence of disease subtypes, which poses a major challenge for the diagnosis, management, and treatment of this autoimmune disorder. Previous work distinguished patient subgroups based on clinical symptoms, but it is not clear to what extent symptoms reflect underlying pathobiology. The purpose of this study was to discover clinical meaningful subtypes of SS based on genome-wide DNA methylation data. We performed a cluster analysis of genome-wide DNA methylation data from labial salivary gland (LSG) tissue collected from 64 SS cases and 67 non-cases. Specifically, hierarchical clustering was performed on low dimensional embeddings of DNA methylation data extracted from a variational autoencoder to uncover unknown heterogeneity. Clustering revealed clinically severe and mild subgroups of SS. Differential methylation analysis revealed that hypomethylation at the MHC and hypermethylation at other genome regions characterize the epigenetic differences between these SS subgroups. Epigenetic profiling of LSGs in SS yields new insights into mechanisms underlying disease heterogeneity. The methylation patterns at differentially methylated CpGs are different in SS subgroups and support the role of epigenetic contributions to the heterogeneity in SS. Biomarker data derived from epigenetic profiling could be explored in future iterations of the classification criteria for defining SS subgroups.


Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Metilação de DNA , Análise por Conglomerados , Glândulas Salivares Menores
7.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35690418

RESUMO

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Assuntos
Metilação de DNA , Epigenoma , Adolescente , Criança , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Caracteres Sexuais
8.
Arthritis Rheumatol ; 74(10): 1676-1686, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635730

RESUMO

OBJECTIVE: Findings from cross-sectional studies have revealed associations between DNA methylation and systemic lupus erythematosus (SLE) outcomes. This study was undertaken to investigate the dynamics of DNA methylation by examining participants from an SLE longitudinal cohort using samples collected at 2 time points. METHODS: A total of 101 participants from the California Lupus Epidemiology Study were included in our analysis. DNA was extracted from blood samples collected at the time of enrolment in the cohort and samples collected after 2 years and was analyzed using Illumina EPIC BeadChip kit. Paired t-tests were used to identify genome-wide changes which included 256 CpG sites previously found to be associated with SLE subtypes. Linear mixed models were developed to understand the relationship between DNA methylation and disease activity, medication use, and sample cell-type proportions, adjusted for age, sex, and genetic principal components. RESULTS: The majority of CpGs that were previously determined to be associated with SLE subtypes remained stable over 2 years (185 CpGs [72.3%]; t-test false discovery rate >0.05). Compared to background genome-wide methylation, there was an enrichment of SLE subtype-associated CpGs that changed over time (27.7% versus 0.34%). Changes in cell-type proportions were associated with changes at 67 CpGs (P < 2.70 × 10-5 ), and 15 CpGs had at least 1 significant association with immunosuppressant use. CONCLUSION: In this longitudinal SLE cohort, we identified a subset of SLE subtype-associated CpGs that remained stable over time and may be useful as biomarkers of disease subtypes. Another subset of SLE subtype-associated CpGs changed at a higher proportion compared to the genome-wide methylome. Additional studies are needed to understand the etiology and impact of these changes on methylation of SLE-associated CpGs.


Assuntos
Metilação de DNA , Lúpus Eritematoso Sistêmico , Biomarcadores , Ilhas de CpG/genética , Estudos Transversais , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , Imunossupressores , Lúpus Eritematoso Sistêmico/genética
9.
PLOS Glob Public Health ; 2(8): e0000647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962725

RESUMO

Comprehensive data on transmission mitigation behaviors and both SARS-CoV-2 infection and serostatus are needed from large, community-based cohorts to identify COVID-19 risk factors and the impact of public health measures. We conducted a longitudinal, population-based study in the East Bay Area of Northern California. From July 2020-March 2021, approximately 5,500 adults were recruited and followed over three data collection rounds to investigate the association between geographic and demographic characteristics and transmission mitigation behavior with SARS-CoV-2 prevalence. We estimated the populated-adjusted prevalence of antibodies from SARS-CoV-2 infection and COVID-19 vaccination, and self-reported COVID-19 test positivity. Population-adjusted SARS-CoV-2 seroprevalence was low, increasing from 1.03% (95% CI: 0.50-1.96) in Round 1 (July-September 2020), to 1.37% (95% CI: 0.75-2.39) in Round 2 (October-December 2020), to 2.18% (95% CI: 1.48-3.17) in Round 3 (February-March 2021). Population-adjusted seroprevalence of COVID-19 vaccination was 21.64% (95% CI: 19.20-24.34) in Round 3, with White individuals having 4.35% (95% CI: 0.35-8.32) higher COVID-19 vaccine seroprevalence than individuals identifying as African American or Black, American Indian or Alaskan Native, Asian, Hispanic, two or more races, or other. No evidence for an association between transmission mitigation behavior and seroprevalence was observed. Despite >99% of participants reporting wearing masks individuals identifying as African American or Black, American Indian or Alaskan Native, Asian, Hispanic, two or more races, or other, as well as those in lower-income households, and lower-educated individuals had the highest SARS-CoV-2 seroprevalence and lowest vaccination seroprevalence. Results demonstrate that more effective policies are needed to address these disparities and inequities.

10.
EC Ophthalmol ; 12(11): 23-31, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108311

RESUMO

Purpose: Optic nerve degeneration is a feature of neurodegenerative eye diseases and causes irreversible vision loss. Therefore, understanding the degenerating patterns of the optic nerve is critical to find the potential therapeutic target for optic neuropathy. However, the traditional method of optic nerve degeneration has the limitations of losing spatiotemporal tissue information. Light sheet fluorescence microscopy (LSFM) is a fluorescence microscopy technique that allows capturing 3D images rapidly with a high spatial optical resolution. In this study, we evaluated the availability of LSFM on the optic nerve with NMDA injected Thy1-CFP mice. Methods: NMDA injected to both eyes of Thy1-CFP mice. After 7 days from the injection, the retina and optic nerve were collected and immunostained with anti-Iba1 antibody. NMDA excitotoxicity induced RGC, and its axon loss and microglial activation in the retina were observed using confocal microscopy. The immunostained optic nerve was completed the optical clearing process with TDE and mounted for LSFM imaging. Results: We found that retinal flatmounts confirmed significant loss of CFP-expressing RGC and axon degradation and loss in Thy1-CFP mice at 7 days after NMDA injection. Together with these data verifying that NMDA induces RGC and its axon loss, we confirmed that NMDA excitotoxicity induced microglia activation and leukostasis, such as increased microglia number, transform its morphology to ameboid or round, and increase in attached leukocytes in vessels. Using LSFM, we observed that CFP expressing nerve fiber was well organized and arranged parallel in vehicle treated optic nerve, whileas NMDA injected optic nerve showed axon swelling and fragmentation and loss of axon density from the anterior to the posterior regions. Furthermore, LSFM enabled the observation of microglia phenotype transformation in the entire optic nerve. Unlike microglia in vehicle injected optic nerve, microglia in NMDA injected optic nerve displayed larger soma and short process with high Iba1 expression through the entire optic nerve from the anterior to posterior. Conclusions: In summary, we examined the applicability of the modified optic clearing protocol for the optic nerve and verified it enabled to acquiring of the 3D images of the optic nerve successfully revealing the complex spatial relationships between the axons, microglia and vasculature throughout the entire organ with single acquisitions. With these optimized techniques, we successfully obtained the high-resolution 3D images of NMDA-induced optic neuropathy, including the clues for optic nerve degeneration such as axon swelling, axonal fragmentation, and microglia activation. Overall, we believe that our current study could help understand the pathology of the optic nerve in neurodegenerative diseases, and it will be the basis for translational research.

11.
Mutagenesis ; 34(4): 315-322, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31587037

RESUMO

DNA methylation has been widely studied for associations with exposures and health outcomes. Both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are epigenetic marks that may function differently to impact gene expression; however, the most commonly used technology to assess methylation for population studies in blood use are the Illumina 450K and EPIC BeadChips, for which the traditional bisulfite conversion does not differentiate 5mC and 5hmC marks. We used a modified protocol originally developed by Stewart et al. to analyse oxidative bisulfite-converted and conventional bisulfite-converted DNA for the same subject in parallel by the EPIC chip, allowing us to isolate the two measures. We measured 5mC and 5hmC in cord blood of 41 newborn participants of the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort and investigated differential methylation of 5mC + 5hmC, isolated 5mC and isolated 5hmC with sex at birth as an example of a biological variable previously associated with DNA methylation. Results showed low levels of 5hmC throughout the epigenome in the cord blood samples in comparison to 5mC. The concordance of autosomal hits between 5mC + 5hmC and exclusive 5mC analyses were low (25%); however, overlap was larger with increased effect size difference. There were 43 autosomal cytosine nucleotide followed by a guanine nucleotide (CpG) sites where 5hmC was associated with sex, 21 of which were unique to 5hmC after adjustment for cell composition. 5hmC only accounts for a small portion of overall methylation in cord blood; however, it has the potential to impact interpretation of combined 5hmC + 5mC studies in cord blood, especially given that effect sizes of differential methylation analyses are often small. Several significant CpG sites were unique to 5hmC, suggesting some functions distinct from 5mC. More studies of genome-wide 5hmC in children are warranted.


Assuntos
5-Metilcitosina/análogos & derivados , Biomarcadores , Metilação de DNA , Sangue Fetal , 5-Metilcitosina/sangue , Epigênese Genética , Epigenômica/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Fatores Sexuais
12.
Nat Commun ; 10(1): 1893, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015461

RESUMO

Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.


Assuntos
Peso ao Nascer/genética , DNA/metabolismo , Epigênese Genética , Genoma Humano , Adolescente , Adulto , Índice de Massa Corporal , Criança , Ilhas de CpG , DNA/genética , Metilação de DNA , Feminino , Desenvolvimento Fetal/genética , Feto , Ácido Fólico/sangue , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fumar/efeitos adversos , Fumar/sangue , Fumar/genética
13.
Environ Int ; 121(Pt 1): 31-40, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30172926

RESUMO

PON1 is a multifunctional enzyme involved in oxidative stress and detoxification of some organophosphate (OP) pesticides. It has been associated with nervous system diseases like Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and autism. We previously found that PON1 susceptible genotypes were associated with lower IQ scores in children. Epigenetic marks, such as DNA methylation, can regulate gene expression. Yet, data on whether DNA methylation may influence the relationship between PON1 levels and neurobehavior are limited. In this study, we used Illumina 450K and EPIC BeadChip arrays to assess PON1 DNA methylation in blood specimens collected from children (n = 238) at birth (cord blood) and age 7 years and examined their relationship with cognitive outcomes. The Wechsler Intelligence Scale for Children was used to assess Full Scale IQ and four composite measures (Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indexes) in 7-year-old children. We observed a consistent yet nonsignificant inverse relationship of methylation at several CpG sites close to the PON1 transcription start site with Full Scale IQ and other composite measures of cognition. We also found an inverse relationship between cord blood methylation at cg15887283 with working memory and a positive association of 7-year-old methylation at cg22798737 with processing speed, independent of OP exposure. However, none of the associations remained significant after accounting for multiple comparisons. This study provides some evidence of the role DNA methylation may play in the known relationship between PON1 and neurobehavior in children, however it appears to be only suggestive and warrants additional research.


Assuntos
Arildialquilfosfatase/genética , Metilação de DNA , Organofosfatos , Praguicidas , Criança , Cognição , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino , Troca Materno-Fetal , Memória de Curto Prazo , Americanos Mexicanos , Gravidez
14.
Epigenetics ; 13(6): 655-664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044683

RESUMO

Analysis of DNA methylation helps to understand the effects of environmental exposures as well as the role of epigenetics in human health. Illumina, Inc. recently replaced the HumanMethylation450 BeadChip (450K) with the EPIC BeadChip, which nearly doubles the measured CpG sites to >850,000. Although the new chip uses the same underlying technology, it is important to establish if data between the two platforms are comparable within cohorts and for meta-analyses. DNA methylation was assessed by 450K and EPIC using whole blood from newborn (n = 109) and 14-year-old (n = 86) participants of the Center for the Health Assessment of Mothers and Children of Salinas. The overall per-sample correlations were very high (r >0.99), although many individual CpG sites, especially those with low variance of methylation, had lower correlations (median r = 0.24). There was also a small subset of CpGs with large mean methylation ß-value differences between platforms, in both the newborn and 14-year datasets. However, estimates of cell type proportion prediction by 450K and EPIC were highly correlated at both ages. Finally, differentially methylated positions between boys and girls replicated very well by both platforms in newborns and older children. These findings are encouraging for application of combined data from EPIC and 450K platforms for birth cohorts and other population studies. These data in children corroborate recent comparisons of the two BeadChips in adults and in cancer cell lines. However, researchers should be cautious when characterizing individual CpG sites and consider independent methods for validation of significant hits.


Assuntos
Metilação de DNA , Epigênese Genética , Exposição Materna/efeitos adversos , Praguicidas/efeitos adversos , Adolescente , Adulto , California , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez
15.
J Neuroinflammation ; 15(1): 173, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866139

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal outcome of Plasmodium infection. There are clear correlations between expression of inflammatory cytokines, severe coagulopathies, and mortality in human CM. However, the mechanisms intertwining the coagulation and inflammation pathways, and their roles in CM, are only beginning to be understood. In mice with T cells deficient in the regulatory cytokine IL-10 (IL-10 KO), infection with Plasmodium chabaudi leads to a hyper-inflammatory response and lethal outcome that can be prevented by anti-TNF treatment. However, inflammatory T cells are adherent within the vasculature and not present in the brain parenchyma, suggesting a novel form of cerebral inflammation. We have previously documented behavioral dysfunction and microglial activation in infected IL-10 KO animals suggestive of neurological involvement driven by inflammation. In order to understand the relationship of intravascular inflammation to parenchymal dysfunction, we studied the congestion of vessels with leukocytes and fibrin(ogen) and the relationship of glial cell activation to congested vessels in the brains of P. chabaudi-infected IL-10 KO mice. METHODS: Using immunofluorescence microscopy, we describe severe thrombotic congestion in these animals. We stained for immune cell surface markers (CD45, CD11b, CD4), fibrin(ogen), microglia (Iba-1), and astrocytes (GFAP) in the brain at the peak of behavioral symptoms. Finally, we investigated the roles of inflammatory cytokine tumor necrosis factor (TNF) and coagulation on the pathology observed using neutralizing antibodies and low-molecular weight heparin to inhibit both inflammation and coagulation, respectively. RESULTS: Many blood vessels in the brain were congested with thrombi containing adherent leukocytes, including CD4 T cells and monocytes. Despite containment of the pathogen and leukocytes within the vasculature, activated microglia and astrocytes were prevalent in the parenchyma, particularly clustered near vessels with thrombi. Neutralization of TNF, or the coagulation cascade, significantly reduced both thrombus formation and gliosis in P. chabaudi-infected IL-10 KO mice. CONCLUSIONS: These findings support the contribution of cytokines, coagulation, and leukocytes within the brain vasculature to neuropathology in malaria infection. Strikingly, localization of inflammatory leukocytes within intravascular clots suggests a mechanism for interaction between the two cascades by which cytokines drive local inflammation without considerable cellular infiltration into the brain parenchyma.


Assuntos
Citocinas/metabolismo , Gliose/etiologia , Gliose/prevenção & controle , Malária Cerebral/complicações , Vasculite do Sistema Nervoso Central/etiologia , Amônia/sangue , Animais , Anticorpos/uso terapêutico , Anticoagulantes/uso terapêutico , Vasos Sanguíneos/patologia , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/tratamento farmacológico , Heparina/uso terapêutico , Interleucina-10/genética , Interleucina-10/metabolismo , Leucócitos/patologia , Fígado/metabolismo , Fígado/patologia , Malária Cerebral/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmodium chabaudi/fisiologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vasculite do Sistema Nervoso Central/tratamento farmacológico , Vasculite do Sistema Nervoso Central/parasitologia
16.
Environ Mol Mutagen ; 58(6): 398-410, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28556291

RESUMO

Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Phthalates are known endocrine disruptors with ubiquitous exposures in the general population including pregnant women, and they have been linked with a number of adverse health outcomes. We examined the association between in utero phthalate exposure and altered patterns of cord blood DNA methylation in 336 Mexican-American newborns. Concentrations of 11 phthalate metabolites were analyzed in maternal urine samples collected at 13 and 26 weeks gestation as a measure of fetal exposure. DNA methylation was assessed using the Infinium HumanMethylation 450K BeadChip adjusting for cord blood cell composition. To identify differentially methylated regions (DMRs) that may be more informative than individual CpG sites, we used two different approaches, DMRcate and comb-p. Regional assessment by both methods identified 27 distinct DMRs, the majority of which were in relation to multiple phthalate metabolites. Most of the significant DMRs (67%) were observed for later pregnancy (26 weeks gestation). Further, 51% of the significant DMRs were associated with the di-(2-ethylhexyl) phthalate metabolites. Five individual CpG sites were associated with phthalate metabolite concentrations after multiple comparisons adjustment (FDR), all showing hypermethylation. Genes with DMRs were involved in inflammatory response (IRAK4 and ESM1), cancer (BRCA1 and LASP1), endocrine function (CNPY1), and male fertility (IFT140, TESC, and PRDM8). These results on differential DNA methylation in newborns with prenatal phthalate exposure provide new insights and targets to explore mechanism of adverse effects of phthalates on human health. Environ. Mol. Mutagen. 58:398-410, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Metilação de DNA/genética , Sangue Fetal/metabolismo , Exposição Materna , Ácidos Ftálicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Demografia , Feminino , Sangue Fetal/efeitos dos fármacos , Humanos , Recém-Nascido , Masculino , Metaboloma/efeitos dos fármacos , Gravidez
17.
Lupus Sci Med ; 3(1): e000183, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28074145

RESUMO

OBJECTIVE: Previous studies have shown that differential DNA methylation is associated with SLE susceptibility. How DNA methylation affects the clinical heterogeneity of SLE has not been fully defined. We conducted this study to identify differentially methylated CpG sites associated with nephritis among women with SLE. METHODS: The methylation status of 428 229 CpG sites across the genome was characterised for peripheral blood cells from 322 women of European descent with SLE, 80 of whom had lupus nephritis, using the Illumina HumanMethylation450 BeadChip. Multivariable linear regression adjusting for population substructure and leucocyte cell proportions was used to identify differentially methylated sites associated with lupus nephritis. The influence of genetic variation on methylation status was investigated using data from a genome-wide association study of SLE. Pathway analyses were used to identify biological processes associated with lupus nephritis. RESULTS: We identified differential methylation of 19 sites in 18 genomic regions that was associated with nephritis among patients with SLE (false discovery rate q<0.05). Associations for four sites in HIF3A, IFI44 and PRR4 were replicated when examining methylation data derived from CD4+ T cells collected from an independent set of patients with SLE. These associations were not driven by genetic variation within or around the genomic regions. In addition, genes associated with lupus nephritis in a prior genome-wide association study were not differentially methylated in this epigenome-wide study. Pathway analysis indicated that biological processes involving type 1 interferon responses and the development of the immune system were associated with nephritis in patients with SLE. CONCLUSIONS: Differential methylation of genes regulating the response to tissue hypoxia and interferon-mediated signalling is associated with lupus nephritis among women with SLE. These findings have not been identified in genetic studies of lupus nephritis, suggesting that epigenome-wide association studies can help identify the genomic differences that underlie the clinical heterogeneity of SLE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA