Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 108290, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150841

RESUMO

In the rhizosphere, the activities within all processes and functions are primarily influenced by plant roots, microorganisms present in the rhizosphere, and the interactions between roots and microorganisms. The rhizosphere, a dynamic zone surrounding the roots, provides an ideal environment for a diverse microbial community, which significantly shapes plant growth and development. Microbial activity in the rhizosphere can promote plant growth by increasing nutrient availability, influencing plant hormonal signaling, and repelling or outcompeting pathogenic microbial strains. Understanding the associations between plant roots and soil microorganisms has the potential to revolutionize crop yields, improve productivity, minimize reliance on chemical fertilizers, and promote sustainable plant growth technologies. The rhizosphere microbiome could play a vital role in the next green revolution and contribute to sustainable and eco-friendly agriculture. However, there are still knowledge gaps concerning plant root-environment interactions, particularly regarding roots and microorganisms. Advances in metabolomics have helped to understand the chemical communication between plants and soil biota, yet challenges persist. This article provides an overview of the latest advancements in comprehending the communication and interplay between plant roots and microbes, which have been shown to impact crucial factors such as plant growth, gene expression, nutrient absorption, pest and disease resistance, and the alleviation of abiotic stress. By improving these aspects, sustainable agriculture practices can be implemented to increase the overall productivity of plant ecosystems.


Assuntos
Microbiota , Rizosfera , Raízes de Plantas , Microbiologia do Solo , Agricultura , Solo/química , Plantas
2.
Plants (Basel) ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653862

RESUMO

One of the most significant constraints on agricultural productivity is the low availability of iron (Fe) in soil, which is directly related to biological, physical, and chemical activities in the rhizosphere. The rhizosphere has a high iron requirement due to plant absorption and microorganism density. Plant roots and microbes in the rhizosphere play a significant role in promoting plant iron (Fe) uptake, which impacts plant development and physiology by influencing nutritional, biochemical, and soil components. The concentration of iron accessible to these live organisms in most cultivated soil is quite low due to its solubility being limited by stable oxyhydroxide, hydroxide, and oxides. The dissolution and solubility rates of iron are also significantly affected by soil pH, microbial population, organic matter content, redox processes, and particle size of the soil. In Fe-limiting situations, plants and soil microbes have used active strategies such as acidification, chelation, and reduction, which have an important role to play in enhancing soil iron availability to plants. In response to iron deficiency, plant and soil organisms produce organic (carbohydrates, amino acids, organic acids, phytosiderophores, microbial siderophores, and phenolics) and inorganic (protons) chemicals in the rhizosphere to improve the solubility of poorly accessible Fe pools. The investigation of iron-mediated associations among plants and microorganisms influences plant development and health, providing a distinctive prospect to further our understanding of rhizosphere ecology and iron dynamics. This review clarifies current knowledge of the intricate dynamics of iron with the end goal of presenting an overview of the rhizosphere mechanisms that are involved in the uptake of iron by plants and microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA