Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675138

RESUMO

The cell-penetrating peptide (CPP) penetratin has gained much attention over many years due to its potential role as a transporter for a broad range of cargo into cells. The modification of penetratin has been extensively investigated too. Aza-peptides are peptide analogs in which one or more of the amino residues are replaced by a semicarbazide. This substitution results in conformational restrictions and modifications in hydrogen bonding properties, which affect the structure and may lead to enhanced activity and selectivity of the modified peptide. In this work, the Trp residues of penetratin were substituted by aza-glycine or glycine residues to examine the effect of these modifications on the cellular uptake and the internalization mechanism. The substitution of Trp48 or Trp48,56 dramatically reduced the internalization, showing the importance of Trp48 in cellular uptake. Interestingly, while aza-glycine in the position of Trp56 increased the cellular uptake, Gly reduced it. The two Trp-modified derivatives showed altered internalization pathways, too. Based on our knowledge, this is the first study about the effect of aza-amino acid substitution on the cell entry of CPPs. Our results suggest that aza-amino acid insertion is a useful modification to change the internalization of a CPP.

2.
Pharmaceutics ; 15(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111751

RESUMO

Cell-penetrating peptides (CPPs) are commonly modified to increase their cellular uptake, alter the mechanism of penetration or enhance their endosomal release. Earlier, we described the internalization enhancement ability of the 4-((4-(dimethylamino)phenyl)azo)benzoyl (Dabcyl) group. We proved that this modification on the N-terminus of tetra- and hexaarginine enhanced their cellular uptake. The introduction of an aromatic ring 4-(aminomethyl) benzoic acid, AMBA) into the peptide backbone has a synergistic effect with Dabcyl, and the tetraarginine derivatives had outstanding cellular uptake. Based on these results, the effect of Dabcyl or Dabcyl-AMBA modification on the internalization of oligoarginines was studied. Oligoarginines were modified with these groups and their internalization was measured using flow cytometry. The concentration dependence of the cellular uptake of selected constructs was compared too. Their internalization mechanism was also examined by using different endocytosis inhibitors. While the effect of the Dabcyl group was optimal for hexaarginine, the Dabcyl-AMBA group increased the cellular uptake in the case of all oligoarginines. All derivatives, with the exception of only tetraarginine, were more effective than the octaarginine control. The internalization mechanism was dependent on the size of the oligoarginine and was independent of the modification. Our findings suggest that these modifications enhanced the internalization of oligoarginines and resulted in novel, very effective CPPs.

3.
Pharmaceutics ; 14(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35631493

RESUMO

Cell-penetrating peptides (CPP) are promising tools for the transport of a broad range of compounds into cells. Since the discovery of the first members of this peptide family, many other peptides have been identified; nowadays, dozens of these peptides are known. These peptides sometimes have very different chemical-physical properties, but they have similar drawbacks; e.g., non-specific internalization, fast elimination from the body, intracellular/vesicular entrapment. Although our knowledge regarding the mechanism and structure-activity relationship of internalization is growing, the prediction and design of the cell-penetrating properties are challenging. In this review, we focus on the different modifications of well-known CPPs to avoid their drawbacks, as well as how these modifications may increase their internalization and/or change the mechanism of penetration.

4.
Pharmaceutics ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36678772

RESUMO

Cell-penetrating peptides represent an emerging class of carriers capable of effective cellular delivery. This work demonstrates the preparation and investigation of efficient CPPs. We have already shown that the presence of 4-((4-(dimethylamino)phenyl)azo)benzoic acid (Dabcyl) and Trp greatly increase the uptake of oligoarginines. This work is a further step in that direction. We have explored the possibility of employing unnatural, aromatic amino acids, to mimic Trp properties and effects. The added residues allow the introduction of aromaticity, not as a side-chain group, but rather as a part of the sequence. The constructs presented exceptional internalization on various cell lines, with an evident structure-activity relationship. The CPPs were investigated for their entry mechanisms, and our peptides exploit favorable pathways, yet one of the peptides relies highly on direct penetration. Confocal microscopy studies have shown selectivity towards the cell lines, by showing diffuse uptake in FADU cells, while vesicular uptake takes place in SCC-25 cell line. These highly active CPPs have proved their applicability in cargo delivery by successfully delivering antitumor drugs into MCF-7 and MDA-MB-231 cells. The modifications in the sequences allow the preparation of short yet highly effective constructs able to rival the penetration of well-known CPPs such as octaarginine (Arg8).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA