Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tuberc Respir Dis (Seoul) ; 87(3): 398-408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38616694

RESUMO

BACKGROUND: Lung cancer is one of the most dangerous cancers and tuberculosis is one of the deadliest infectious diseases in the world. Many studies have confirmed the connection between lung cancer and tuberculosis, and also the microRNAs (miRNAs) that play a major role in the development of these two diseases. This study aims to use different databases to find effective miRNAs and their role in different genes in lung and tuberculosis diseases. It also aims to determine the role of miR-34a and miR-182 in lung cancer and tuberculosis. METHODS: Using the Gene Expression Omnibus (GEO) database, the influential miRNA databases were studied in the two diseases. Finally, considering bioinformatics results and literature studies, two miR-34a and miR-182 were selected. The role of these miRNAs and their target genes was carefully evaluated using bioinformatics. The expression of miRNAs in the plasma of patients with lung cancer and tuberculosis and healthy individuals was investigated. RESULTS: According to the GEO database, miR-34a and miR-182 are miRNAs that affect tuberculosis and lung cancer. By checking the miRBase, miRcode, DIANA, miRDB, galaxy, Kyoto Encyclopedia of Genes and Genomes databases, the role of these miRNAs on genes and different molecular pathways and their effect on these miRNAs were mentioned. The results of the present study showed that the expression of miR-34a and miR-182 was lower than that of healthy people. The p-value for miR-182 was <0.0001 and for miR-34a was 0.3380. CONCLUSION: Reducing the expression pattern of these miRNAs indicates their role in lung cancer and tuberculosis occurrence. Therefore, these miRNAs can be used as a biomarker for prognosis, diagnosis, and treatment methods.

2.
Cell J ; 26(2): 167-168, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38459734

RESUMO

In this article published in Cell J, Vol 19, No 4, Jan-Mar (Winter) 2018, on pages 654-659, the authors found that Figures 2 and 3 had some errors that accidentally happened during organizing figures. Because of mislabeling of some images and saving them in an incorrect folder, the following figures' legends are corrected. The authors would like to apologies for any inconvenience.

3.
Microb Pathog ; 184: 106376, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777141

RESUMO

Human Immunodeficiency Virus type-1 (HIV-1) causes persistent and life-threatening infection, leading to progressive disease. MicroRNAs (miRNAs) are regulators of gene expression which can be found in circulating human blood samples. hsa-miR-29a-3p has been identified as a potential regulator of the Negative Regulatory Factor (Nef) gene from the HIV-1 viral genome. In this study, we aimed to compare the serum levels of hsa-miR-29a-3p with HIV-1 viral load in a substantial number of infected individuals. We collected serum samples from a total of 48 participants, including 36 untreated HIV-positive patients, and 12 HIV-negative individuals as a control group, matched for age and sex. The HIV-1 viral load in both the case and control groups was confirmed using qRT-PCR. Subsequent qRT-PCR analysis of circulating hsa-miR-29a-3p levels revealed lower miRNA expression in the groups with higher viral loads. A negative correlation (r = -0.58) was calculated between hsa-miR-29a-3p levels and HIV-1 viral load. These findings suggest that the expression level of hsa-miR-29a-3p may serve as an indicator of HIV-1 viral load in human serum samples. Additionally, this miR may hold promise as a potential tool for enhancing HIV-1 treatment strategies.


Assuntos
HIV-1 , MicroRNAs , Humanos , HIV-1/genética , HIV-1/metabolismo , Carga Viral , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase
4.
In Silico Pharmacol ; 11(1): 22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37587975

RESUMO

Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the MexA and AcrA efflux pumps in Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the MexA and AcrA genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with MexA and AcrA pumps at - 29.28 and - 28.59 Kcal.mol-1, respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (p < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in P. aeruginosa and E. coli. Analysis of the genes by real-time PCR demonstrated that the expression of MexA and AcrA genes was significantly reduced, compared to untreated bacteria (p < 0.001). The findings suggest, among other things, that eugenol may make P. aeruginosa and E. coli more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics.

5.
Sci Rep ; 13(1): 13710, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607966

RESUMO

RNA-binding protein Musashi1 (MSI1) shows an increased expression level in several cancers and has been introduced as a prognostic marker in some malignancies. It is expected that if any miRNA is encoded by this gene, it might have a role in cancer development or could be considered as a prognostic biomarker. Accordingly, in this study, we aimed to find novel miRNA(s) inside the intronic regions of the MSI1 gene. Here, we report two novel miRNAs within intron 4 of MSI1 gene, named MSM2 and MSM3, which were selected among several miRNA precursors predicted by bioinformatic studies. For experimental analysis, corresponding precursor miRNAs were transfected into HEK293T cells and exogenous expression of the mature miRNAs were detected. Two mature miRNAs, MSM3-3p and MSM3-5p were generated by MSM3 precursor and one, MSM2-5p was derived from MSM2. Besides, endogenous expression of MSM2-5p and MSM3-3p was detected in MCF-7 and SH-SY5Y cell lines. Expression of both mature miRNAs was also detected in clinical samples of breast cancer. Additionally, the interaction between the MSM3-3p and 3'UTR region of PDE11A was confirmed by dual luciferase assay. Overall, our data demonstrated that MSI1 gene encodes two novel miRNAs in breast cancer cells.


Assuntos
Neoplasias da Mama , MicroRNAs , Neuroblastoma , Humanos , Feminino , MicroRNAs/genética , Neoplasias da Mama/genética , Células HEK293 , Oncogenes , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética
6.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194921, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804476

RESUMO

Emerging evidence has shown lncRNAs play important roles in signaling pathways involved in colorectal cancer (CRC) carcinogenesis. However, only a few functional lncRNAs have been extensively researched, especially in CRC-related signaling pathways. Looking for novel candidate regulators of CRC incidence and progression, using available RNA-seq and microarray datasets, LINC00963 was introduced as a bona fide oncogenic-lncRNA. Consistently, RT-qPCR results showed that LINC00963 was up-regulated in CRC tissues. However, our attempt to amplify the full-length lncRNA from cDNA resulted in the discovery of two novel variants (LINC00963-v2 & LINC00963-v3) that surprisingly, were downregulated in CRC tissues, detected by RT-qPCR. Overexpression of LINC00963-v2/-v3 in HCT116 and SW480 cells resulted in downregulation of the major oncogenes and upregulation of the main tumor suppressor genes involved in PI3K and Wnt signaling, verified through RT-qPCR, western blotting, and TOPFlash assays. Mechanistic studies revealed that LINC00963-v2/-v3 exert their effect on PI3K and Wnt signaling through sponging miR-10a-5p, miR-143-3p, miR-217, and miR-512-3p, which in turn these miRNAs are fine-regulators of PTEN, APC1, and Axin1 tumor suppressor genes verified by dual-luciferase assay and RT-qPCR. At cellular levels, LINC00963-v2/-v3 overexpression suppressed cell proliferation, viability, and migration while increasing the apoptosis of CRC cell lines, detected by PI flow cytometry, colony formation, MTT, RT-qPCR, wound-healing, Transwell, AnnexinV-PE/7AAD, caspase3/7 activity assays, and Hoechst/PI-AO/EB staining. Overall, our results indicate that LINC00963-v2 & -v3 are novel tumor suppressor ceRNAs that attenuate the PI3K and Wnt pathways during CRC incidence and these lncRNAs may serve as potential targets for CRC therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Via de Sinalização Wnt/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética
7.
Biomed Res Int ; 2022: 7216758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747498

RESUMO

Human epidermal growth factor receptor 2 (HER2) is involved in the development of the majority of cancers. Therefore, it can be a potential target for cancer therapy. It was hypothesized that some of the broad effects of HER2 could be mediated by miRNAs that are probably embedded inside this gene. Here, we predicted and then empirically substantiated the processing and expression of a novel miRNA named HER2-miR1, located in the HER2 gene; transfection of a DNA fragment corresponding to HER2-miR1 precursor sequence (preHER2-miR1) resulted in ~4000-fold elevation of HER2-miR1 mature form in HEK293t cells. Also, the detection of HER2-miR1 in 5637, NT2, and HeLa cell lines confirmed its endogenous production. Following the HER2-miR1 overexpression, TOP/FOP flash assay and RT-qPCR results showed that Wnt signaling pathway was downregulated. Consistently, flow cytometry results revealed that overexpression of HER2-miR1 in Wnt+ cell lines (SW480 and HCT116) was ended in G1 arrest, unlike in Wnt- cells (HEK293t). Taking everything into account, our results report the discovery of a novel miRNA that is located within the HER2 gene sequence and has a repressive impact on the Wnt signaling pathway.


Assuntos
MicroRNAs , Ciclo Celular/genética , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes erbB-2 , Células HEK293 , Células HeLa , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética
8.
Cell J ; 23(4): 421-428, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34455717

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) are short non-coding RNAs that play a role in post-transcriptional regulation of gene expression. Hsa-miR-11181 was originally introduced as a regulator of genes involved in some brain tumours. Due to the high expression of Hsa-miR-11181 in limited glioblastoma brain tumours, in this study we intend to assess the expressions of Hsa-miR-11181 and Has-miR11181-3p in brain tumour tissues and attribute new target genes to these miRNAs. MATERIALS AND METHODS: In this experimental study, total RNA from brain tissue samples was extracted for real-time quantitative polymerase chain reaction (RT-qPCR) analysis after cDNA synthesis. In order to confirm a direct interaction of Hsa-miR-11181 with two target genes, the 3' UTR of AKT2 and transforming growth factor-beta receptor 1 (TGFBR1) were cloned separately for assessment by the dual luciferase assay. RESULTS: RT-qPCR analysis indicated that both Hsa-miR-11181-5p and Has-miR11181-3p specifically up-regulated in higher grades of glioma tumours versus other brain tumour types. Consistently, lower expression levels of AKT2 and TGFBR1 were detected in higher grade gliomas compared to other types of brain tumours, which was inverse to the level of expression detected for the heparin-binding EGF-like growth factor (HBEGF) gene. The results of the dual luciferase assay supported a direct interaction of Hsa-miR-11181 with the 3' UTR sequences of the AKT2 and TGFBR1 genes. CONCLUSION: Overall, our data suggest that miR-1118 is a potential molecular biomarker for discrimination of glioma brain tumours from other brain tumour types.

9.
Plant Physiol Biochem ; 150: 27-38, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32109787

RESUMO

Owing to the growing applications of the multi-walled carbon nanotubes (MWCNTs) in the communications and energy industries, they have attracted increasing attention for their effects on the environment and plants. Therefore, we investigated the impact of foliar exposure to MWCNTs on the oxidative stress responses in the Salvia verticillata as a medicinal plant. Furthermore, we evaluated the possible correlations between gene expression and activity of the key enzymes in the phenolic acids biosynthesis pathways and their accumulation in the treated leaves. The leaves of two-month-old plants were sprayed with different concentrations (0-1000 mg L-1) of MWCNTs. Raman's data and Transmission Electron Microscopy images have confirmed the absorption of MWCNTs via epidermal cells layer into the parenchymal cells of the exposed leaves. The results showed that exposure to MWCNTs led to a decrease in the photosynthetic pigments and increases in the oxidative stress indices (enzymatic and non-enzymatic antioxidants) in the leaves with a dose-dependent manner. The content of rosmarinic acid as a main phenolic acid was increased in the MWCNTs-exposed leaves to 50 and 1000 mg L-1, nearly four times relative to the control. Unlike with other examined enzymes, a positive correlation was deduced between the activity and gene expression patterns of the rosmarinic acid synthase with the rosmarinic acid accumulation in the treatments. Overall, MWCNTs at the low concentrations could promote the production of the pharmaceutical metabolites by the changes in the ROS generation. However, at the higher concentrations, MWCNTs were toxic and induced the oxidative damages in S. verticillata.


Assuntos
Nanotubos de Carbono , Plantas Medicinais , Salvia , Antioxidantes/metabolismo , Poluentes Ambientais/toxicidade , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais/química , Plantas Medicinais/efeitos dos fármacos , Salvia/efeitos dos fármacos
10.
Front Oncol ; 9: 653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417861

RESUMO

Breast cancer represents the most common malignancy in women worldwide and the ErbB/PI3K pathway has been found to play a crucial role in regulation of the cancer cell growth. MicroRNAs have been implicated in regulating diverse cellular pathways and therefore, understanding the link between the regulatory microRNAs and the ErbB/PI3K signaling pathway could potentially be helpful for breast cancer prevention and treatment. The aim of this study is to examine the regulatory effect of miR-326 on ErbB/PI3K signaling pathway in breast cancer development and progression. The results of qRT-PCR, RNA seq, and array data indicated that miR-326 was remarkably down-regulated in breast tumor tissues and correlated with poor survival outcome. Importantly, very low levels of miR-326 expression were found in aggressive breast cells compared to less-aggressive cell types. Mechanistically, a gene network including EGFR, ErbB2, ErbB3, AKT1, AKT2, and AKT3 targeted by miR-326, thereby providing suppression of ErbB/PI3K pathway, detected by RT-qPCR, and dual luciferase assay. In addition, Western blot analysis revealed that miR-326 upregulation decreased PI3K signaling activity by decreasing total AKT and p-AKT protein level in SKBR3 cell lines. Interestingly, up regulation of ErbB2 rescued the effect of miR-326 on miR-326 target genes. Further functional assays demonstrated that up regulation of miR-326 significantly suppressed cell growth as evidenced by cell cycle, cell cycle associated genes expression, colony formation and MTT assays and induced apoptosis, detected by Annexin V-PI. In addition, EMT markers RT-qPCR, scratch, and Transwell assays showed inhibited cellular migration and invasion following miR-326 upregulation. Altogether, our results revealed that miR-326 play a tumor-suppressive role in breast cancer through inhibiting ErbB/PI3K pathway and miR-326 may serve as a potential therapeutic target for the treatment of patients with breast cancer.

11.
Hum Mol Genet ; 28(19): 3219-3231, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31238337

RESUMO

YWHAE gene product belongs to the 14-3-3 protein family that mediates signal transduction in plants and mammals. Protein-coding and non-coding RNA (lncRNA) transcripts have been reported for this gene in human. Here, we aimed to functionally characterize YWHAE-encoded lncRNA in colorectal cancer-originated cells. RNA-seq analysis showed that YWHAE gene is upregulated in colorectal cancer specimens. Additionally, bioinformatics analysis suggested that YWHAE lncRNA sponges miR-323a-3p and miR-532-5p that were predicted to target K-Ras 3'UTR sequence. Overexpression of YWHAE lncRNA resulted in upregulation of K-Ras gene expression, while overexpression of both miR-323a-3p and miR-532-5p had an inverse effect, detected by RT-qPCR. Consistently, western blot analysis confirmed that YWHAE lncRNA overexpression upregulated K-Ras/Erk1/2 and PI3K/Akt signaling pathways, while miR-323a-3p and miR-532-5p overexpression suppressed both pathways in HCT116 cells. Furthermore, dual luciferase assay validated the direct interaction of miR-323a-3p and miR-532-5p with K-Ras 3'UTR sequence and supported the sponging effect of YWHAE lncRNA over both miRNAs. These results suggested YWHAE lncRNA as an oncogene that exerts its effect through sponging miR-323a-3p and miR-532-5p and in turn, upregulates K-Ras/Erk1/2 and PI3K/Akt signaling pathways. Consistently, flow cytometry analysis, MTT assay and measuring cyclin D1 gene expression, confirmed the cell cycle stimulatory effect of YWHAE lncRNA, while miR-323a-3p and miR-532-5p showed an inhibitory effect on cell cycle progression. Finally, wound-healing assay supported the cell migratory effect of YWHAE lncRNA in HCT116 cells. This study identified a novel mechanism involving YWHAE-encoded lncRNA, miR-323a-3p and miR-532-5p in regulating HCT116 cell survival and suggested a potential therapeutic avenue for colorectal cancer.


Assuntos
Proteínas 14-3-3/genética , Neoplasias do Colo/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Movimento Celular , Sobrevivência Celular , Ciclina D1/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases , Análise de Sequência de RNA , Regulação para Cima
12.
Stem Cell Res Ther ; 10(1): 191, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248450

RESUMO

BACKGROUND: WNT and TGFß signaling pathways play critical regulatory roles in cardiomyocyte fate determination and differentiation. MiRNAs are also known to regulate different biological processes and signaling pathways. Here, we intended to find candidate miRNAs that are involved in cardiac differentiation through regulation of WNT and TGFß signaling pathways. METHODS: Bioinformatics analysis suggested hsa-miR-335-3p and hsa-miR-335-5p as regulators of cardiac differentiation. Then, RT-qPCR, dual luciferase, TOP/FOP flash, and western blot analyses were done to confirm the hypothesis. RESULTS: Human embryonic stem cells (hESCs) were differentiated into beating cardiomyocytes, and these miRNAs showed significant expression during the differentiation process. Gain and loss of function of miR-335-3p and miR-335-5p resulted in BRACHYURY, GATA4, and NKX2-5 (cardiac differentiation markers) expression alteration during the course of hESC cardiac differentiation. The overexpression of miR-335-3p and miR-335-5p also led to upregulation of CNX43 and TNNT2 expression, respectively. Our results suggest that this might be mediated through enhancement of WNT and TGFß signaling pathways. CONCLUSION: Overall, we show that miR-335-3p/5p upregulates cardiac mesoderm (BRACHYURY) and cardiac progenitor cell (GATA4 and NKX2-5) markers, which are potentially mediated through activation of WNT and TGFß signaling pathways. Our findings suggest miR-335-3p/5p to be considered as a regulator of the cardiac differentiation process.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Mesoderma/citologia , MicroRNAs/metabolismo , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Biologia Computacional , Células HEK293 , Humanos , Imuno-Histoquímica , Mesoderma/metabolismo , MicroRNAs/genética , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Biol Chem ; 400(5): 677-685, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30391930

RESUMO

Transforming growth factor-ß (TGFß) signaling acts as suppressor and inducer of tumor progression during the early and late stages of cancer, respectively. Some miRNAs have shown a regulatory effect on TGFß signaling and here, we have used a combination of bioinformatics and experimental tools to show that hsa-miR-5590-3p is a regulator of multiple genes expression in the TGFß signaling pathway. Consistent with the bioinformatics predictions, hsa-miR-5590-3p had a negative correlation of expression with TGFß-R1, TGFß-R2, SMAD3 and SMAD4 genes, detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, the dual luciferase assay supported the direct interaction between hsa-miR-5590-3p and TGFß-R1, TGFß-R2, SMAD3 and SMAD4-3'UTR sequences. Consistently, the TGFß-R1 protein level was reduced following the overexpression of hsa-miR-5590-3p, detected by Western analysis. Also, hsa-miR-5590-3p overexpression brought about the downregulation of TGFß-R1, TGFß-R2, SMAD3 and SMAD4 expression in HCT-116 cells, detected by RT-qPCR, followed by cell cycle arrest in the sub-G1 phase, detected by flow cytometry. RT-qPCR results indicated that hsa-miR-5590-3p is significantly downregulated in breast tumor tissues (late stage) compared to their normal pairs. Altogether, data introduces hsa-miR-5590-3p as a negative regulator of the TGFß/SMAD signaling pathway which acts through downregulation of TGFß-R1, TGFß-R2, SMAD3 and SMAD4 transcripts. Therefore, it can be tested as a therapy target in cancers in which the TGFß/SMAD pathway is deregulated.


Assuntos
MicroRNAs/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Transdução de Sinais/genética , Proteína Smad3/genética , Proteína Smad4/genética , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Biologia Computacional , Humanos , MicroRNAs/genética
14.
Avicenna J Med Biotechnol ; 10(2): 98-104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849986

RESUMO

BACKGROUND: The cyclin E2 (CYCE2) is an important regulator in the progression and development of NSCLC, and its ectopic expression promoted the proliferation, invasion, and migration in several tumors, including Non-Small Cell Lung Cancer (NSCLC). However, the upregulation of CYCE2 in NSCLC cells suggested that it has a key role in tumorigenicity. In addition, the RAS family proteins as oncoproteins were activated in many major tumor types and its suitability as the therapeutic target in NSCLC was proposed. Considering the crucial role of microRNAs, it was hypothesized that altered expression of hsa-miR-30d-5p and hsa-let-7b might provide a reliable diagnostic tumor marker for diagnosis of NSCLC. METHOD: Real-time RT-PCR approach could evaluate the expression alteration of hsa-miR-30d-5p and hsa-let-7b and it was related to the surgically resected tissue of 24 lung cancer patients and 10 non-cancerous patients. The miRNAs expression was associated with clinicopathological features of the patients. RESULTS: Hsa-miR-30d showed a significant downregulation (p=0.0382) in resected tissue of NSCLC patients compared with control group. Its expression level could differentiate different stages of malignancies from each other. The ROC curve analysis gave it an AUC=0.73 (p=0.037) which was a good score as a reliable biomarker. In contrast, hsa-let-7b was significantly overexpressed in tumor samples (p=0.03). Interestingly, our findings revealed a significant association of hsa-let-7b in adenocarcinoma tumors, compared to Squamous Cell Carcinomas (SCC) (p<0.05). Also, analysis of ROC curve of hsa-let-7b (AUC=0.74, p-value=0.042) suggests that it could be as a suitable biomarker for NSCLC. CONCLUSION: Together, these results suggest a possible tumor suppressor role for hsa-miR-30d in lung tumor progression and initiation. Moreover, upregulation of hsa-let-7b was associated with the tumor type.

15.
Tumour Biol ; 39(10): 1010428317724280, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29022482

RESUMO

OCT4 is a crucial transcription factor that maintains self-renewal and pluripotency of embryonic stem and embryonic carcinoma cells. The human OCT4 gene can generate at least three variants (OCT4A, OCT4B, and OCTB1) via alternative splicing and alternative promoters. It has been previously reported that OCT4A is the main isoform, retaining stemness state in embryonic stem and embryonic carcinoma cells. There are several reports on the expression of OCT4A, OCT4B, and OCT4B1 in some cancers and tumor cells. The expression of OCT4 in cancer tissues and cell lines appeared to be highly controversial since it was believed that OCT4 is exclusively expressed in embryonic stem/embryonic carcinoma cells. Here, we are reporting the detection of a novel alternatively spliced variant of OCT4, OCT4B2, in several pluripotent and tumor cell lines. Moreover, the expression pattern of OCT4B2 in the course of neural differentiation of NT2 and NCCIT, embryonic carcinoma cells, was similar to that of OCT4A. OCT4B2 was highly expressed in undifferentiated cells; however, its expression was sharply downregulated upon induction of differentiation. Overexpression of OCT4B2 did not affect the distribution of cells in different cell-cycle phases of transfected cells, compared to the mock transfected cells. Interestingly, the expression of OCT4B2 transcript was elevated under the heat-shock induction. In conclusion, we are reporting a new variant of OCT4, which is expressed under different physiological conditions. The finding shed more light on complexity of OCT4 expression and functions.


Assuntos
Processamento Alternativo/genética , Diferenciação Celular/genética , Neoplasias/genética , Fator 3 de Transcrição de Octâmero/biossíntese , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo
16.
Plant Physiol Biochem ; 120: 202-212, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29055856

RESUMO

Mentha aquatica is an aromatic herb which possesses valuable terpenoids constituents. Here, we intended to evaluate the effects of the different manganese (Mn) concentrations on the physiological, biochemical and molecular responses in M. aquatica. Basic Hoagland's solution (control), 40, 80, and 160 µM of Mn supplied as MnSO4·H2O were applied to the nutrient solution. The results indicated that the different concentrations of Mn differently affected the physiological, biochemical and molecular responses in M. aquatica. The growth parameters (biomass and photosynthetic pigments) and expression levels of ß-caryophyllene synthase (CPS), limonene synthase (Ls), geranyl diphosphate synthase (Gpps), and menthofuran synthase (Mfs) genes were increased at the moderate Mn concentrations (40 and 80 µM) and began to decrease at the higher levels. However, the contents of anthocyanins, flavonoids, malonaldehyde (MDA) and hydrogen peroxide (H2O2), Mn accumulation, activities of antioxidant enzymes, yield of essential oils and the expression levels of 1-Deoxy d-xylulose-5-phosphate synthase (Dxs) and isopentenyl diphosphate isomerase (Ippi) genes were gradually increased with increasing concentration of Mn in the nutrient solution. Also, the content and chemical composition of terpenoid constituents were altered in the Mn-treated plants. Here, we suggest that the application of external Mn in nutrient solution elevates the growth and expression levels of the genes that are involved in the terpenoid biosynthesis pathway in M. aquatica. Nevertheless, the extent and stability of these growth and gene expression elevation are varied among the different Mn treatments.


Assuntos
Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Manganês/farmacologia , Mentha , Proteínas de Plantas/biossíntese , Antocianinas/biossíntese , Manganês/metabolismo , Compostos de Manganês/metabolismo , Compostos de Manganês/farmacologia , Mentha/crescimento & desenvolvimento , Mentha/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacologia
17.
J Mol Neurosci ; 63(2): 254-266, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28956260

RESUMO

MicroRNAs are small non-coding RNAs that posttranscriptionally regulate mRNA expression. hsa-miR-6165 which was previously discovered in our group is located in the forth intron of p75NTR gene and its function is still under investigation. As P75NTR has diverse cellular functions, some of the complexity of its function could be attributed to the internally located microRNA. Our analysis revealed that treatment of HCT116 cells with 5-azacytidine promoted differential expression of hsa-miR-6165 from its host gene which is consistent with the bioinformatic prediction of an independent promoter for hsa-miR-6165. In addition, hsa-miR-6165 promoter is capable of driving GFP reporter gene in HeLa cells. The putative target gene expression level which was detected using RT-qPCR is inversely proportional to the expression level of hsa-miR-6165 during NT2 cell neural differentiation. Furthermore, hsa-miR-6165 overexpression resulted in significant downregulation of ABLIM-1, PVRL1, and PDK1 target genes, while it attenuates NT2 neural differentiation. Hsa-miR-6165 overexpression in SW480 cells also resulted in significant downregulation of PKD1, DAGLA, and PLXNA2 putative target genes, while it increases the sub-G1 cell population of SW480 and HEK293T cells as detected by flow cytometry. Overall, in this study, we report an independent promoter for hsa-miR-6165 which is active in HeLa cells. Additionally, hsa-miR-6165 targets ABLIM-1, PVRL1, PKD1, PLXNA2, and PDK1 genes, and unlike in HEK293T and SW480 cells, hsa-miR-6165 overexpression does not affect HeLa cells while its downregulation reduces sub-G1 cell population. Our results validate that hsa-miR-6165 affects the cell cycle progression and could increase apoptosis in human cell lines.


Assuntos
MicroRNAs/genética , Células-Tronco Neurais/metabolismo , Neurogênese , Apoptose , Ciclo Celular , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia
18.
Plant Physiol Biochem ; 118: 98-106, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28624685

RESUMO

Agrobacterium tumefaciens is a very destructive plant pathogen. Selection of effective biological agents against this pathogen depends on more insight into molecular plant defence responses during the biocontrol agent-pathogen interaction. Auxin as a phytohormone is a key contributor in pathogenesis and plant defence and accumulation of auxin transport carriers are accompanied by increasing in flavonoid and miRNAs concentrations during plant interactions with bacteria. The aim of this research was molecular analysis of Bacillus subtilis (ATCC21332) biocontrol effect against A. tumefaciens (IBRC-M10701) pathogen interacting with Nicotiana tabacum plants. Tobacco plants were either treated with both or one of the challenging bacteria and the expression of miRNAs inside the plants were analysed through qRT-PCR. The results indicated that the bacterial treatments affect expression level of nta-miRNAs. In tobacco plants treated only with A. tumefaciens the expression of nta-miR393 was more than that was recorded for nta-miR167 (3.8 folds, P < 0.05 in 3dpi). While the expression level of nta-miR167 was more than the expression of nta-miR393 in other treatments including tobacco plants treated only with B. subtilis (2.1 folds, P < 0.05) and the plants treated with both of the bacteria (3.9 folds, P < 0.05) in 3 dpi. Also, the composition and concentration of rutin, myrecetin, daidzein and vitexin flavanoid derivatives were detected using HPLC and analysed according the standard curves. All of the tested flavanoid compounds were highly detected in Tobacco plants which were only challenged with A. tumefaciens. The amount of these compounds in the plants which were challenged with the B. subtilis alone, was similar to the amount recorded for the plants challenged with the both bacteria. This study suggests a relationship between the upregulation of nta-miR167, nta-miR393 and accumulation of flavanoid compounds. Overall, the expression of these miRNAs as well as flavonoid derivatives has the potential of being used as biomarkers for the interaction of B. subtilis and A. tumefaciens model system in N. tabacum.


Assuntos
Agrobacterium tumefaciens/metabolismo , Bacillus subtilis/metabolismo , Flavonoides/biossíntese , MicroRNAs/biossíntese , Nicotiana/metabolismo , RNA de Plantas/biossíntese , Agrobacterium tumefaciens/genética , Bacillus subtilis/genética , Flavonoides/genética , MicroRNAs/genética , RNA de Plantas/genética , Nicotiana/genética
19.
Gene ; 627: 369-372, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28633916

RESUMO

POU domain proteins are an important family of transcription factors that regulates cell type-specific gene expression. One of the most crucial members of this family that maintains pluripotency and self-renewal of embryonic stem cells is POU5F1/OCT4. The OCT4 gene can generate several variants under different situations/cell types includes OCT4A that is the major factor sustains pluripotency in embryonic stem and embryonic carcinoma cells, and also OCT4B and OCT4B1, which are transcribed from a different potential promoter located in intron1 and are expressed in various tissues and cell types. In present study, during expression check of OCT4B1 in embryonic carcinoma cells (NT2), we discovered a novel OCT4 transcript for the first time and designated it as OCT4B4. This variant is expressed in various human pluripotent cells and its expression is down-regulated upon induction of differentiation. Moreover, knocking down of OCT4B4 by shRNA resulted in increased accumulation of transfected cells in G0/G1 phase compared to the mock-transfected control cells.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Células-Tronco de Carcinoma Embrionário/citologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
Cell J ; 17(3): 502-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464822

RESUMO

OBJECTIVE: Podophyllotoxin (PTOX), a natural compound in numerous plants, contains remarkable biological properties that include anti-tumor, anti-viral such as anti-human im- munodeficiency virus (HIV) activities. In order to avoid its adverse effects, various com- pounds have been derived from PTOX. 6-methoxy PTOX (MPTOX) is one of the natural PTOX derivatives with an extra methoxy group. MPTOX is mostly isolated from the Linum species. This study has sought to determine the biological effects of MPTOX on cancer cell lines, 5637 and K562. MATERIALS AND METHODS: In this experimental study, we treated the 5637 and K562 cancer cell lines with MPTOX in a doseand time-dependent manner. Apoptosis was examined by flow cytometry and viability rate was analyzed by the MTT assay. Expressions of the tubulin (TUBB3) and topoisomerase II (TOPIIA) genes were determined by real-time poly- merase chain reaction (PCR). RESULTS: Treatment with MPTOX led to significant induction of apoptosis in cancer cells compared to control cells. Gene expression analysis showed reduced levels of TUBB3 and TOPIIA mRNA following MPTOX treatment. CONCLUSION: MPTOX inhibited TUBB3 and TOPIIA gene expression and subsequently induced cell death through apoptosis. These results suggested that MPTOX could be considered a potential anti-tumor agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA