Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(3): 1385-1394, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31715097

RESUMO

Flux estimates of volatile organic compounds (VOCs) from oil and gas (O&G) production facilities are fundamental in understanding hazardous air pollutant concentrations and ozone formation. Previous off-site emission estimates derive fluxes by ratioing VOCs measured in canisters to methane fluxes measured in the field. This study uses the Environmental Protection Agency's Other Test Method 33A (OTM 33A) and a fast-response proton transfer reaction mass spectrometer to make direct measurements of VOC emissions from O&G facilities in the Upper Green River Basin, Wyoming. We report the first off-site direct flux estimates of benzene, toluene, ethylbenzene, and xylenes from upstream O&G production facilities and find that these estimates can vary significantly from flux estimates derived using both the canister ratio technique and from the emission inventory. The 32 OTM 33A flux estimates had arithmetic mean (and 95% CI) as follows: benzene 17.83 (0.22, 98.05) g/h, toluene 34.43 (1.01, 126.76) g/h, C8 aromatics 37.38 (1.06, 225.34) g/h, and methane 2.3 (1.7, 3.1) kg/h. A total of 20% of facilities measured accounted for ∼67% of total BTEX emissions. While this heavy tail is less dramatic than previous observations of methane in other basins, it is more prominent than that predicted by the emission inventory.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Monitoramento Ambiental , Wyoming
2.
Environ Sci Technol ; 51(15): 8832-8840, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28628305

RESUMO

Atmospheric methane emissions from active natural gas production sites in normal operation were quantified using an inverse Gaussian method (EPA's OTM 33a) in four major U.S. basins/plays: Upper Green River (UGR, Wyoming), Denver-Julesburg (DJ, Colorado), Uintah (Utah), and Fayetteville (FV, Arkansas). In DJ, Uintah, and FV, 72-83% of total measured emissions were from 20% of the well pads, while in UGR the highest 20% of emitting well pads only contributed 54% of total emissions. The total mass of methane emitted as a percent of gross methane produced, termed throughput-normalized methane average (TNMA) and determined by bootstrapping measurements from each basin, varied widely between basins and was (95% CI): 0.09% (0.05-0.15%) in FV, 0.18% (0.12-0.29%) in UGR, 2.1% (1.1-3.9%) in DJ, and 2.8% (1.0-8.6%) in Uintah. Overall, wet-gas basins (UGR, DJ, Uintah) had higher TNMA emissions than the dry-gas FV at all ranges of production per well pad. Among wet basins, TNMA emissions had a strong negative correlation with average gas production per well pad, suggesting that consolidation of operations onto single pads may reduce normalized emissions (average number of wells per pad is 5.3 in UGR versus 1.3 in Uintah and 2.8 in DJ).


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Campos de Petróleo e Gás , Arkansas , Colorado , Monitoramento Ambiental , Gás Natural , Wyoming
3.
Nature ; 514(7522): 351-4, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25274311

RESUMO

The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA