Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(12): e17384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757458

RESUMO

An important goal of many studies in molecular ecology is to utilize molecular tools to elucidate how critical traits like metabolism and growth are affected by environmental stressors and how organisms offset these stresses by adaptive molecular-level responses. Stress from food deprivation may be critical for early developmental stages that require a continued supply of substrates for energy metabolism and growth if development is to be completed. In a 'From the Cover' article in this issue of Molecular Ecology, Li et al. (2023) examined the effects of withholding food (unicellular algae) on 10 traits of larvae of the purple sea urchin (Strongylocentrotus purpuratus), ranging from the molecular level (gene expression) to morphology. Overall, this study sheds new light on the plasticity of larval development and the tight linkages that exist among traits as they respond to changes in food availability. Importantly, shifts in the sources of food utilized under different dietary treatments show the plasticity of these larvae to alter reliance on endogenous energy stores and dissolved organic matter (DOM) as algae deprivation continues. The effects of global change on the amounts and phenology of productivity in the seas make this type of integrated, multi-level analysis an important tool for predicting the future states of marine ecosystems.


Assuntos
Larva , Animais , Larva/crescimento & desenvolvimento , Ouriços-do-Mar/crescimento & desenvolvimento , Abastecimento de Alimentos , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/crescimento & desenvolvimento
2.
BMC Biol ; 21(1): 262, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981664

RESUMO

BACKGROUND: RNA editing by adenosine deaminase acting on RNA (ADAR) occurs in all metazoans and fulfils several functions. Here, we examined effects of acclimation temperature (27 °C, 18 °C,13 °C) on editing patterns in six tissues of zebrafish (Danio rerio). RESULTS: Sites and total amounts of editing differed among tissues. Brain showed the highest levels, followed by gill and skin. In these highly edited tissues, decreases in temperatures led to large increases in total amounts of editing and changes in specific edited sites. Gene ontology analysis showed both similarities (e.g., endoplasmic reticulum stress response) and differences in editing among tissues. The majority of edited sites were in transcripts of transposable elements and the 3'UTR regions of protein coding genes. By experimental validation, translation efficiency was directly related to extent of editing of the 3'UTR region of an mRNA. CONCLUSIONS: RNA editing increases 3'UTR polymorphism and affects efficiency of translation. Such editing may lead to temperature-adaptive changes in the proteome through altering relative amounts of synthesis of different proteins.


Assuntos
Edição de RNA , Peixe-Zebra , Animais , Peixe-Zebra/genética , Regiões 3' não Traduzidas , Temperatura , Aclimatação
3.
J Exp Biol ; 226(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37416965

RESUMO

The physiological mechanisms that limit thermal tolerance are broadly relevant to comparative biology and global change. Species differences in macromolecular stability play important roles in evolved patterns of heat tolerance, but other mechanisms such as oxidative stress have also been hypothesized to contribute. For example, mussels in the genus Mytilus exhibit evolved physiological differences at several levels of organization that have been linked with interspecific differences in whole-organism heat tolerance. Both omics and behavioral studies suggested that variation in resistance to oxidative stress plays a role in these differences. Functional data are needed to test this hypothesis. Here, we compared three Mytilus congeners to examine whether susceptibility to oxidative stress contributes to acute heat tolerance. We assayed the activity of two antioxidant enzymes (catalase, superoxide dismutase), as well as levels of oxidative damage to lipids, DNA and individual proteins (using gel-based proteomics methods). In addition, we assessed these oxidative stress responses after repeated episodes of heat stress experienced in air or while immersed in seawater, given that survival and competitive outcomes between Mytilus congeners differ in these two contexts. The results are generally inconsistent with patterns that would be expected if oxidative stress contributes to thermal sensitivity. Rather, the more heat-tolerant congeners suffer comparable or even elevated levels of oxidative damage. As predicted, different treatment contexts led to distinct changes in proteome-wide abundance patterns and, to a lesser extent, protein carbonylation profiles. Overall, the results question the relevance of oxidative damage as a mediator of heat tolerance in this genus.

4.
J Exp Biol ; 226(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36637438

RESUMO

Journal of Experimental Biology (JEB) is celebrating its first 100 years this year. My own relationship with the journal spans over six decades and encompasses a variety of roles: reader, author, Editor (1995-2000), Editorial Advisory Board member (2000 to present) and Director on the board of its publisher, The Company of Biologists (2003-2009). I was therefore delighted when the journal Editors asked me to write a Perspective to reflect on how the journal and the publishing environment in which it competes have evolved over this long period, and to peek into my crystal ball and comment on what the future might hold for the journal and the primary fields it covers: comparative-environmental-evolutionary physiology, neuroethology and biomechanics.


Assuntos
Ecossistema , Redação , Evolução Biológica , Fenômenos Biomecânicos
5.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35388895

RESUMO

Thermal performance curves are commonly used to investigate the effects of heat acclimation on thermal tolerance and physiological performance. However, recent work indicates that the metrics of these curves heavily depend on experimental design and may be poor predictors of animal survival during heat events in the field. In intertidal mussels, cardiac thermal performance (CTP) tests have been widely used as indicators of animals' acclimation or acclimatization state, providing two indices of thermal responses: critical temperature (Tcrit; the temperature above which heart rate abruptly declines) and flatline temperature (Tflat; the temperature where heart rate ceases). Despite the wide use of CTP tests, it remains largely unknown how Tcrit and Tflat change within a single individual after heat acclimation, and whether changes in these indices can predict altered survival in the field. Here, we addressed these issues by evaluating changes in CTP indices in the same individuals before and after heat acclimation. For control mussels, merely reaching Tcrit was not lethal, whereas remaining at Tcrit for ≥10 min was lethal. Heat acclimation significantly increased Tcrit only in mussels with an initially low Tcrit (<35°C), but improved their survival time above Tcrit by 20 min on average. Tflat increased by ∼1.6°C with heat acclimation, but it is unlikely that increased Tflat improves survival in the field. In summary, Tcrit and Tflat per se may fall short of providing quantitative indices of thermal tolerance in mussels; instead, a combination of Tcrit and tolerance time at temperatures ≥Tcrit better defines changes in thermal tolerance with heat acclimation.


Assuntos
Mytilus , Animais , Aclimatação , Temperatura Alta , Mytilus/fisiologia , Temperatura
6.
Mar Life Sci Technol ; 4(3): 389-413, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37073170

RESUMO

The seas confront organisms with a suite of abiotic stressors that pose challenges for physiological activity. Variations in temperature, hydrostatic pressure, and salinity have potential to disrupt structures, and functions of all molecular systems on which life depends. During evolution, sequences of nucleic acids and proteins are adaptively modified to "fit" these macromolecules for function under the particular abiotic conditions of the habitat. Complementing these macromolecular adaptations are alterations in compositions of solutions that bathe macromolecules and affect stabilities of their higher order structures. A primary result of these "micromolecular" adaptations is preservation of optimal balances between conformational rigidity and flexibility of macromolecules. Micromolecular adaptations involve several families of organic osmolytes, with varying effects on macromolecular stability. A given type of osmolyte generally has similar effects on DNA, RNA, proteins and membranes; thus, adaptive regulation of cellular osmolyte pools has a global effect on macromolecules. These effects are mediated largely through influences of osmolytes and macromolecules on water structure and activity. Acclimatory micromolecular responses are often critical in enabling organisms to cope with environmental changes during their lifetimes, for example, during vertical migration in the water column. A species' breadth of environmental tolerance may depend on how effectively it can vary the osmolyte composition of its cellular fluids in the face of stress. Micromolecular adaptations remain an under-appreciated aspect of evolution and acclimatization. Further study can lead to a better understanding of determinants of environmental tolerance ranges and to biotechnological advances in designing improved stabilizers for biological materials.

7.
Biol Rev Camb Philos Soc ; 97(2): 554-581, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34713568

RESUMO

Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.


Assuntos
Aclimatação , Ecossistema , Adaptação Fisiológica , Animais , Mudança Climática , Moluscos , Temperatura
8.
Ann Rev Mar Sci ; 14: 1-23, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34102065

RESUMO

The ability of marine organisms to thrive over wide ranges of environmental stressors that perturb structures of proteins, nucleic acids, and lipids illustrates the effectiveness of adaptation at the biochemical level. A critical role of these adaptations is to achieve a proper balance between structural rigidity, which is necessary for maintaining three-dimensional conformation, and flexibility, which is required to allow changes in conformation during function. The Goldilocks principle refers to this balancing act, wherein structural stability and functional properties are poised at values that are just right for the environment the organism faces. Achieving this balance involves changes in macromolecular sequence and adaptive change in the composition of the aqueous or lipid milieu in which macromolecules function. This article traces the development of the field of biochemical adaptation throughout my career and shows how comparative studies of marine animals from diverse habitats have shed light on fundamental properties of life common to all organisms.


Assuntos
Aclimatação , Adaptação Fisiológica , Animais , Organismos Aquáticos , Ecossistema
9.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34728561

RESUMO

Macromolecular function commonly involves rapidly reversible alterations in three-dimensional structure (conformation). To allow these essential conformational changes, macromolecules must possess higher order structures that are appropriately balanced between rigidity and flexibility. Because of the low stabilization free energies (marginal stabilities) of macromolecule conformations, temperature changes have strong effects on conformation and, thereby, on function. As is well known for proteins, during evolution, temperature-adaptive changes in sequence foster retention of optimal marginal stability at a species' normal physiological temperatures. Here, we extend this type of analysis to messenger RNAs (mRNAs), a class of macromolecules for which the stability-lability balance has not been elucidated. We employ in silico methods to determine secondary structures and estimate changes in free energy of folding (ΔGfold) for 25 orthologous mRNAs that encode the enzyme cytosolic malate dehydrogenase in marine mollusks with adaptation temperatures spanning an almost 60 °C range. The change in free energy that occurs during formation of the ensemble of mRNA secondary structures is significantly correlated with adaptation temperature: ΔGfold values are all negative and their absolute values increase with adaptation temperature. A principal mechanism underlying these adaptations is a significant increase in synonymous guanine + cytosine substitutions with increasing temperature. These findings open up an avenue of exploration in molecular evolution and raise interesting questions about the interaction between temperature-adaptive changes in mRNA sequence and in the proteins they encode.


Assuntos
Evolução Molecular , Moluscos/química , RNA Mensageiro/química , Termotolerância , Animais , Simulação por Computador , Malato Desidrogenase/genética , Estrutura Molecular , Moluscos/fisiologia , RNA Mensageiro/fisiologia
10.
Biophys Rev ; 13(4): 459-484, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34471434

RESUMO

Dr. Serge N. Timasheff, our mentor and friend, passed away in 2019. This article is a collection of tributes from his postdoctoral fellows, friends, and daughter, who all have been associated with or influenced by him or his research. Dr. Timasheff is a pioneer of research on thermodynamic linkage between ligand interaction and macromolecular reaction. We all learned a great deal from Dr. Timasheff, not only about science but also about life.

11.
Proc Biol Sci ; 287(1940): 20202561, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33290677

RESUMO

Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.


Assuntos
Aclimatação , Resposta ao Choque Térmico , Temperatura Alta , Mytilus/fisiologia , Animais , Temperatura Corporal , California , Mudança Climática , Ecossistema , Estações do Ano , Temperatura , Termotolerância
13.
J Exp Biol ; 223(Pt 13)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32457061

RESUMO

Climate change is increasing the temperature variability animals face, and thermal acclimatization allows animals to adjust adaptively to this variability. Although the rate of heat acclimatization has received some study, little is known about how long these adaptive changes remain without continuing exposure to heat stress. This study explored the rate at which field acclimatization states are lost when temperature variability is minimized during constant submersion. California mussels (Mytilus californianus) with different acclimatization states were collected from high- and low-zone sites (∼12 versus ∼5°C daily temperature ranges, respectively) and then kept submerged at 15°C for 8 weeks. Each week, the cardiac thermal performance of mussels was measured as a metric of acclimatization state: critical (Tcrit) and flatline (Tflat) temperatures were recorded. Over 8 weeks of constant submersion, the mean Tcrit of high-zone mussels decreased by 1.07°C from baseline, but low-zone mussels' mean Tcrit was unchanged. High- and low-zone mussels' mean maximum heart rate (HR) and resting HR decreased ∼12 and 35%, respectively. Tflat was unchanged in both groups. These data suggest that Tcrit and HR are more physiologically plastic in response to the narrowing of an animal's daily temperature range than Tflat is, and that an animal's prior acclimatization state (high versus low) influences the acclimatory capacity of Tcrit Approximately 2 months were required for the cardiac thermal performance of the high-zone mussels to reach that of the low-zone mussels, suggesting that acclimatization to high and variable temperatures may persist long enough to enable these animals to cope with intermittent bouts of heat stress.


Assuntos
Aclimatação , Mytilus , Animais , Mudança Climática , Temperatura Alta , Temperatura
14.
Fish Shellfish Immunol ; 100: 70-79, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32135339

RESUMO

Hemocytes are immune cells in the hemolymph of invertebrates that play multiple roles in response to stressors; hemocyte mortality can thus serve as an indicator of overall animal health. However, previous research has often analyzed hemolymph samples pooled from several individuals, which precludes tracking individual responses to stressors over time. The ability to track individuals is important, however, because large inter-individual variation in response to stressors can confound the interpretation of pooled samples. Here, we describe protocols for analysis of inter- and intra-individual variability in hemocyte mortality across repeated hemolymph samples of California mussels, Mytilus californianus, free from typical abiotic stressors. To assess individual variability in hemocyte mortality with serial sampling, we created four groups of 15 mussels each that were repeatedly sampled four times: at baseline (time zero) and three subsequent times separated by either 24, 48, 72, or 168 h. Hemocyte mortality was assessed by fluorescence-activated cell sorting (FACS) of cells stained with propidium iodide. Our study demonstrates that hemolymph can be repeatedly sampled from individual mussels without mortality; however, there is substantial inter- and intra-individual variability in hemocyte mortality through time that is partially dependent on the sampling interval. Across repeated samples, individual mussels' hemocyte mortality had, on average, a range of ~6% and a standard deviation of ~3%, which was minimized with sampling periods ≥72 h apart. Due to this intra-individual variability, obtaining ≥2 samples from a specimen will more accurately establish an individual's baseline. Pooled-sample means were similar to individual-sample means; however, pooled samples masked the individual variation in each group. Overall, these data lay the foundation for future work exploring individual mussels' temporal responses to various stressors on a cellular level.


Assuntos
Hemócitos/patologia , Mytilus/citologia , Manejo de Espécimes/métodos , Animais , Sobrevivência Celular , Citometria de Fluxo , Hemócitos/imunologia , Hemolinfa/citologia , Mytilus/imunologia , Alimentos Marinhos , Estresse Fisiológico
15.
J Exp Zool A Ecol Integr Physiol ; 333(6): 379-397, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31944627

RESUMO

The cellular stress response (CSR) is critical for enabling organisms to cope with thermal damage to proteins, nucleic acids, and membranes. It is a graded response whose properties vary with the degree of cellular damage. Molecular damage has positive, as well as negative, function-perturbing effects. Positive effects include crucial regulatory interactions that orchestrate involvement of the different components of the CSR. Thermally unfolded proteins signal for rapid initiation of transcription of genes encoding heat shock proteins (HSPs), central elements of the heat shock response (HSR). Thermal disruption of messenger RNA (mRNA) secondary structures in untranslated regions leads to the culling of the mRNA pool: thermally labile mRNAs for housekeeping proteins are degraded by exonucleases; heat-resistant mRNAs for stress proteins like HSPs then can monopolize the translational apparatus. Thus, proteins and RNA function as "cellular thermometers," and evolved differences in their thermal stabilities enable rapid initiation of the CSR whenever cell temperature rises significantly above the normal thermal range of a species. Covalent DNA damage, which may result from increased production of reactive oxygen species, is temperature-dependent; its extent may determine cellular survival. High levels of stress that exceed capacities for molecular repair can lead to proteolysis, inhibition of cell division, and programmed cell death (apoptosis). Onset of these processes may occur later in the stress period, after initiation of the HSR, to allow HSPs opportunity to restore protein homeostasis. Delay of these energy costly processes may also result from shortfalls in availability of adenosine triphosphate and reducing power during times of peak stress.


Assuntos
Fenômenos Fisiológicos Celulares , Estresse Fisiológico , Temperatura , Animais , Regulação da Expressão Gênica , RNA Mensageiro/química
16.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31395674

RESUMO

Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, the ability to account for mussels' physiological responses to thermal stress affects ecologists' capacity to predict the impacts of a warming climate on this ecosystem. Here, we examined the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: (1) the critical temperature (Tcrit) at which heart rate (HR) precipitously declines, and (2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate and fast rates, and HR was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Tcrit in high- but not low-zone mussels, and Tcrit was higher in high- versus low-zone mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. As heating rate significantly impacted high- but not low-zone mussels' cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.


Assuntos
Calefação , Mytilus/fisiologia , Termotolerância , Animais , Coração/fisiologia
17.
Proc Natl Acad Sci U S A ; 116(2): 679-688, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584112

RESUMO

Comparative studies of orthologous proteins of species evolved at different temperatures have revealed consistent patterns of temperature-related variation in thermal stabilities of structure and function. However, the precise mechanisms by which interspecific variations in sequence foster these adaptive changes remain largely unknown. Here, we compare orthologs of cytosolic malate dehydrogenase (cMDH) from marine molluscs adapted to temperatures ranging from -1.9 °C (Antarctica) to ∼55 °C (South China coast) and show how amino acid usage in different regions of the enzyme (surface, intermediate depth, and protein core) varies with adaptation temperature. This eukaryotic enzyme follows some but not all of the rules established in comparisons of archaeal and bacterial proteins. To link the effects of specific amino acid substitutions with adaptive variations in enzyme thermal stability, we combined site-directed mutagenesis (SDM) and in vitro protein experimentation with in silico mutagenesis using molecular dynamics simulation (MDS) techniques. SDM and MDS methods generally but not invariably yielded common effects on protein stability. MDS analysis is shown to provide insights into how specific amino acid substitutions affect the conformational flexibilities of mobile regions (MRs) of the enzyme that are essential for binding and catalysis. Whereas these substitutions invariably lie outside of the MRs, they effectively transmit their flexibility-modulating effects to the MRs through linked interactions among surface residues. This discovery illustrates that regions of the protein surface lying outside of the site of catalysis can help establish an enzyme's thermal responses and foster evolutionary adaptation of function.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Gastrópodes/enzimologia , Temperatura Alta , Malato Desidrogenase/química , Simulação de Dinâmica Molecular , Mutagênese , Animais , Sítios de Ligação , Catálise , Gastrópodes/genética , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Mutagênese Sítio-Dirigida
18.
J Exp Biol ; 221(Pt 4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472490

RESUMO

The secondary and tertiary orders of RNA structure are crucial for a suite of RNA-related functions, including regulation of translation, gene expression and RNA turnover. The temperature sensitivity of RNA secondary and tertiary structures is exploited by bacteria to fabricate RNA thermosensing systems that allow a rapid adaptive response to temperature change. RNA thermometers (RNATs) present in non-coding regions of certain mRNAs of pathogenic bacteria enable rapid upregulation of translation of virulence proteins when the temperature of the bacterium rises after entering a mammalian host. Rapid upregulation of translation of bacterial heat-shock proteins likewise is governed in part by RNATs. Turnover of mRNA may be regulated by temperature-sensitive RNA structures. Whereas the roles of temperature-sensitive RNA structures similar to RNATs in Eukarya and Archaea are largely unknown, there would appear to be a potential for all taxa to adaptively regulate their thermal physiology through exploitation of RNA-based thermosensory responses akin to those of bacteria. In animals, these responses might include regulation of translation of stress-induced proteins, alternative splicing of messenger RNA precursors, differential expression of allelic proteins, modulation of activities of small non-coding RNAs, regulation of mRNA turnover and control of RNA editing. New methods for predicting, detecting and experimentally modifying RNA secondary structure offer promising windows into these fascinating aspects of RNA biochemistry. Elucidating whether animals too have exploited the types of RNA thermosensing tools that are used so effectively by bacteria seems likely to provide exciting new insights into the mechanisms of evolutionary adaptation and acclimatization to temperature.


Assuntos
Bactérias/química , Fenômenos Fisiológicos Bacterianos , RNA Bacteriano/química , Sensação Térmica , Temperatura
19.
Proc Natl Acad Sci U S A ; 115(6): 1274-1279, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358381

RESUMO

Orthologous proteins of species adapted to different temperatures exhibit differences in stability and function that are interpreted to reflect adaptive variation in structural "flexibility." However, quantifying flexibility and comparing flexibility across proteins has remained a challenge. To address this issue, we examined temperature effects on cytosolic malate dehydrogenase (cMDH) orthologs from differently thermally adapted congeners of five genera of marine molluscs whose field body temperatures span a range of ∼60 °C. We describe consistent patterns of convergent evolution in adaptation of function [temperature effects on KM of cofactor (NADH)] and structural stability (rate of heat denaturation of activity). To determine how these differences depend on flexibilities of overall structure and of regions known to be important in binding and catalysis, we performed molecular dynamics simulation (MDS) analyses. MDS analyses revealed a significant negative correlation between adaptation temperature and heat-induced increase of backbone atom movements [root mean square deviation (rmsd) of main-chain atoms]. Root mean square fluctuations (RMSFs) of movement by individual amino acid residues varied across the sequence in a qualitatively similar pattern among orthologs. Regions of sequence involved in ligand binding and catalysis-termed mobile regions 1 and 2 (MR1 and MR2), respectively-showed the largest values for RMSF. Heat-induced changes in RMSF values across the sequence and, importantly, in MR1 and MR2 were greatest in cold-adapted species. MDS methods are shown to provide powerful tools for examining adaptation of enzymes by providing a quantitative index of protein flexibility and identifying sequence regions where adaptive change in flexibility occurs.


Assuntos
Malato Desidrogenase/química , Moluscos/enzimologia , Animais , Sítios de Ligação , Malato Desidrogenase/metabolismo , Simulação de Dinâmica Molecular , Desnaturação Proteica , Temperatura
20.
J Exp Biol ; 220(Pt 22): 4292-4304, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141883

RESUMO

The ability of animals to cope with environmental stress depends - in part - on past experience, yet knowledge of the factors influencing an individual's physiology in nature remains underdeveloped. We used an individual monitoring system to record body temperature and valve gaping behavior of rocky intertidal zone mussels (Mytilus californianus). Thirty individuals were selected from two mussel beds (wave-exposed and wave-protected) that differ in thermal regime. Instrumented mussels were deployed at two intertidal heights (near the lower and upper edges of the mussel zone) and in a continuously submerged tidepool. Following a 23-day monitoring period, measures of oxidative damage to DNA and lipids, antioxidant capacities (catalase activity and peroxyl radical scavenging) and tissue contents of organic osmolytes were obtained from gill tissue of each individual. Univariate and multivariate analyses indicated that inter-individual variation in cumulative thermal stress is a predominant driver of physiological variation. Thermal history over the outplant period was positively correlated with oxidative DNA damage. Thermal history was also positively correlated with tissue contents of taurine, a thermoprotectant osmolyte, and with activity of the antioxidant enzyme catalase. Origin site differences, possibly indicative of developmental plasticity, were only significant for catalase activity. Gaping behavior was positively correlated with tissue contents of two osmolytes. Overall, these results are some of the first to clearly demonstrate relationships between inter-individual variation in recent experience in the field and inter-individual physiological variation, in this case within mussel beds. Such micro-scale, environmentally mediated physiological differences should be considered in attempts to forecast biological responses to a changing environment.


Assuntos
Antioxidantes/metabolismo , Temperatura Corporal , Meio Ambiente , Mytilus/fisiologia , Estresse Oxidativo , Animais , Comportamento Alimentar , Brânquias/química , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA