Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766120

RESUMO

Transmembrane protein 135 (TMEM135) is a 52 kDa protein with five predicted transmembrane domains that is highly conserved across species. Previous studies have shown that TMEM135 is involved in mitochondrial dynamics, thermogenesis, and lipid metabolism in multiple tissues; however, its role in the inner ear or the auditory system is unknown. We investigated the function of TMEM135 in hearing using wild-type (WT) and Tmem135 FUN025/FUN025 ( FUN025 ) mutant mice on a CBA/CaJ background, a normal-hearing mouse strain. Although FUN025 mice displayed normal auditory brainstem response (ABR) at 1 month, we observed significantly elevated ABR thresholds at 8, 16, and 64 kHz by 3 months, which progressed to profound hearing loss by 12 months. Consistent with our auditory testing, 13-month-old FUN025 mice exhibited a severe loss of outer hair cells and spiral ganglion neurons in the cochlea. Our results using BaseScope in situ hybridization indicate that TMEM135 is expressed in the inner hair cells, outer hair cells, and supporting cells. Together, these results demonstrate that the FUN025 mutation in Tmem135 causes progressive sensorineural hearing loss, and suggest that TMEM135 is crucial for maintaining key cochlear cell types and normal sensory function in the aging cochlea.

2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496399

RESUMO

Although estrogen affects the structure and function of the nervous system and brain and has a number of effects on cognition, its roles in the auditory and vestibular systems remain unclear. The actions of estrogen are mediated predominately through two classical nuclear estrogen receptors, estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). In the current study, we investigated the roles of ESR1 in normal auditory function and balance performance using 3-month-old wild-type (WT) and Esr1 knockout (KO) mice on a CBA/CaJ background, a normal-hearing strain. As expected, body weight of Esr1 KO females was lower than that of Esr1 KO males. Body weight of Esr1 KO females was higher than that of WT females, while there was no difference in body weight between WT and Esr1 KO males. Similarly, head diameter was higher in Esr1 KO vs. WT females. Contrary to our expectations, there were no differences in auditory brainstem response (ABR) thresholds, ABR waves I-V amplitudes and ABR waves I-V latencies at 8, 16, 32, and 48 kHz, distortion product otoacoustic emission (DPOAE) thresholds and amplitudes at 8, 16, and 32 kHz, and rotarod balance performance (latency to fall) between WT and Esr1 KO mice. Furthermore, there were no sex differences in ABRs, DPOAEs, and rotarod balance performance in Esr1 KO mice. Taken together, our findings show that Esr1 deficiency does not affect auditory function or balance performance in normal hearing mice, and suggest that loss of Esr1 is likely compensated by ESR2 or other estrogen receptors to maintain the structure and function of the auditory and vestibular systems under normal physiological conditions.

3.
Hear Res ; 428: 108684, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599258

RESUMO

Hearing loss is the third most prevalent chronic health condition affecting older adults and age-related hearing loss (ARHL) is the most common form of hearing impairment. Significant sex differences in hearing have been documented in humans and rodents. In general, the results of these studies show that men lose their hearing more rapidly than women. However, the cellular mechanism underlying sex differences in hearing or hearing loss remains largely unknown, and to our knowledge, there is no well-established animal model for studying sex differences in hearing. In the current study, we examined sex differences in body composition, voluntary wheel running activity, balance performance, auditory function, and cochlear histology in young, middle-age, and old CBA/CaJ mice, a model of age-related hearing loss. As expected, body weight of young females was lower than that of males. Similarly, lean mass and total water mass of young, middle-age, and old females were lower than those of males. Young females showed higher voluntary wheel running activity during the dark cycle, an indicator of mobility, physical activity, and balance status, compared to males. Young females also displayed higher auditory brainstem response (ABR) wave I amplitudes at 8 kHz, wave II, III, V amplitudes at 8 and 48 kHz, and wave IV/I and V/I amplitude ratios at 48 kHz compared to males. Collectively, our findings suggest that the CBA/CaJ mouse strain is a useful model to study the cellular mechanisms underlying sex differences in physical activity and hearing.


Assuntos
Longevidade , Presbiacusia , Camundongos , Pessoa de Meia-Idade , Animais , Feminino , Humanos , Masculino , Idoso , Envelhecimento/fisiologia , Caracteres Sexuais , Atividade Motora , Limiar Auditivo/fisiologia , Camundongos Endogâmicos CBA , Audição , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Composição Corporal
4.
Hear Res ; 428: 108678, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577362

RESUMO

Mitochondrial dysfunction has been implicated in numerous common diseases as well as aging and plays an important role in the pathogenesis of sensorineural hearing loss (SNHL). In the current study, we showed that supplementation with germanium dioxide (GeO2) in CBA/J mice resulted in SNHL due to the degeneration of the stria vascularis and spiral ganglion, which were associated with down-regulation of mitochondrial respiratory chain associated genes and up-regulation in apoptosis associated genes in the cochlea. Supplementation with taurine, coenzyme Q10, or hydrogen-rich water, attenuated the cochlear degeneration and associated SNHL induced by GeO2. These results suggest that daily supplements or consumption of antioxidants, such as taurine, coenzyme Q10, and hydrogen-rich water, may be a promising intervention to slow SNHL associated with mitochondrial dysfunction.


Assuntos
Perda Auditiva Neurossensorial , Ubiquinona , Camundongos , Animais , Ubiquinona/farmacologia , Taurina/farmacologia , Camundongos Endogâmicos CBA , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/prevenção & controle , Cóclea , Mitocôndrias
5.
Hear Res ; 427: 108659, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493529

RESUMO

Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.


Assuntos
Isocitrato Desidrogenase , Mitocôndrias , NADP , Estresse Oxidativo , Idoso , Humanos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Antioxidantes/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , NADP/metabolismo , Cóclea/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia
6.
Hum Mol Genet ; 32(3): 417-430, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35997776

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal storage disease caused by mutations in the gene that encodes the protein N-acetyl-glucosaminidase (NAGLU). Defective NAGLU activity results in aberrant retention of heparan sulfate within lysosomes leading to progressive central nervous system (CNS) degeneration. Intravenous treatment options are limited by the need to overcome the blood-brain barrier and gain successful entry into the CNS. Additionally, we have demonstrated that AAV8 provides a broader transduction area in the MPS IIIB mouse brain compared with AAV5, 9 or rh10. A triple-capsid mutant (tcm) modification of AAV8 further enhanced GFP reporter expression and distribution. Using the MPS IIIB mouse model, we performed a study using either intracranial six site or intracisterna magna injection of AAVtcm8-codon-optimized (co)-NAGLU using untreated MPS IIIB mice as controls to assess disease correction. Disease correction was evaluated based on enzyme activity, heparan sulfate storage levels, CNS lysosomal signal intensity, coordination, activity level, hearing and survival. Both histologic and enzymatic assessments show that each injection method results in supranormal levels of NAGLU expression in the brain. In this study, we have shown correction of lifespan and auditory deficits, increased CNS NAGLU activity and reduced lysosomal storage levels of heparan sulfate following AAVtcm8-coNAGLU administration and partial correction of NAGLU activity in several peripheral organs in the murine model of MPS IIIB.


Assuntos
Mucopolissacaridose III , Animais , Camundongos , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Mucopolissacaridose III/metabolismo , Capsídeo/metabolismo , Acetilglucosaminidase/genética , Acetilglucosaminidase/metabolismo , Heparitina Sulfato/metabolismo
7.
Neurotox Res ; 39(4): 1227-1237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33900547

RESUMO

Paraquat, a superoxide generator, can damage the cochlea causing an ototoxic hearing loss. The purpose of the study was to determine if deletion of Bak, a pro-apoptotic gene, would reduce paraquat ototoxicity or if deletion of Sirt3, which delays age-related hearing loss under caloric restriction, would increase paraquat ototoxicity. We tested these two hypotheses by treating postnatal day 3 cochlear cultures from Bak±, Bak-/-, Sirt3±, Sirt3-/-, and WT mice with paraquat and compared the results to a standard rat model of paraquat ototoxicity. Paraquat damaged nerve fibers and dose-dependently destroyed rat outer hair cells (OHCs) and inner hair cells (IHCs). Rat hair cell loss began in the base of the cochlea with a 10 µM dose and as the dose increased from 50 to 500 µM, the hair cell loss increased near the base of the cochlea and spread toward the apex of the cochlea. Rat OHC losses were consistently greater than IHC losses. Unexpectedly, in all mouse genotypes, paraquat-induced hair cell lesions were maximal near the apex of the cochlea and minimal near the base. This unusual damage gradient is opposite to that seen in paraquat-treated rats and in mice and rats treated with other ototoxic drugs. However, paraquat always induced greater OHC loss than IHC loss in all mouse strains. Contrary to our hypothesis, Bak deficient mice were more vulnerable to paraquat ototoxicity than WT mice (Bak-/- > Bak± > WT), suggesting that Bak plays a protective role against hair cell stress. Also, contrary to expectation, Sirt3-deficient mice did not differ significantly from WT mice, possibly due to the fact that Sirt3 was not experimentally upregulated in Sirt3-expressing mice prior to paraquat treatment. Our results show for the first time a gradient of ototoxic damage in mice that is greater in the apex than the base of the cochlea.


Assuntos
Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Herbicidas/toxicidade , Paraquat/toxicidade , Sirtuína 3/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/patologia , Relação Dose-Resposta a Droga , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Sirtuína 3/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética
8.
Hear Res ; 402: 108002, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32600853

RESUMO

Age-related hearing loss (AHL) is the most common form of hearing impairment. AHL is thought to be a multifactorial condition resulting from the interaction of numerous causes including aging, genetics, exposure to noise, and exposure to endogenous and exogenous toxins. Cells possess many detoxification enzymes capable of removing thousands of cytotoxic xenobiotics and endogenous toxins such as 4-hydroxynonenal (4-HNE), one of the most abundant cytotoxic end products of lipid peroxidation. The cellular detoxification system involves three phases of enzymatic detoxification. Of these, the glutathione transferase (GST) detoxification system converts a toxic compound into a less toxic form by conjugating the toxic compound to reduced glutathione by GST enzymes. In this review, we describe the current understanding of the cochlear detoxification system and examine the growing link between GST detoxification, oxidative lipid damage, ototoxicity, and cochlear aging with a particular focus on the alpha-class GSTs (GSTAs). We also describe how exposure to ototoxic drugs, exposure to noise, or aging results in increased 4-HNE levels, how 4-HNE damages various cell components under stress conditions, and how GSTAs detoxify 4-HNE in the auditory system.


Assuntos
Ototoxicidade , Envelhecimento , Aldeídos/toxicidade , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos , Lipídeos , Estresse Oxidativo
9.
Exp Gerontol ; 142: 111123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191210

RESUMO

Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.


Assuntos
COVID-19/epidemiologia , Geriatria , Desempenho Físico Funcional , SARS-CoV-2 , Idoso , Envelhecimento/fisiologia , Ritmo Circadiano/fisiologia , Cognição , Terapias Complementares , Humanos , Pessoa de Meia-Idade , Limitação da Mobilidade , Transtornos do Sono-Vigília/complicações
10.
Exp Gerontol ; 141: 111078, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866605

RESUMO

Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.


Assuntos
Antioxidantes , Perda Auditiva , Animais , Limiar Auditivo , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva/genética , Longevidade , Camundongos , Camundongos Endogâmicos CBA
11.
Exp Gerontol ; 133: 110872, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044382

RESUMO

The glutathione transferase (GST) detoxification system converts exogenous and endogenous toxins into a less toxic form by conjugating the toxic compound to reduced glutathione (GSH) by a variety of GST enzymes. Of the ~20 GST isoforms, GSTA4 exhibits high catalytic efficiency toward 4-hydroxynonenal (4-HNE), one of the most abundant end products of lipid peroxidation that contributes to neurodegenerative diseases and age-related disorders. Conjugation to GSH by GSTA4 is thought to be a major route of 4-HNE elimination. In the current study, we investigated the effects of Gsta4 deficiency on age-related cochlear pathology and hearing loss using young (3-5 months old) and old (24-25 months old) Gsta4+/+ and Gsta4-/- mice that were backcrossed onto the CBA/CaJ mouse strain, a well-established model of age-related hearing loss (AHL). At 3-5 months of age, loss of Gsta4 resulted in decreased total GSTA activity toward 4-HNE in the inner ears of young mice. However, there were no differences in the levels of 4-HNE in the inner ears between Gsta4+/+ and Gsta4-/- mice at 3-5 or 24-25 months of age. No histological abnormalities were observed in the cochlea and no hearing impairments were observed in young Gsta4-/- mice. At 24-25 months of age, both Gsta4+/+ and Gsta4-/- mice showed elevated ABR thresholds compared to 3-month-old mice, but there were no differences in ABR thresholds, cochlear spiral ganglion neuron densities, or stria vascularis thickness between Gsta4+/+ and Gsta4-/- mice. Together, these results suggest that under normal physiological conditions or during normal aging, GSTA4 is not essential for removal of 4-HNE in mouse inner ears.


Assuntos
Cóclea , Glutationa Transferase/genética , Presbiacusia , Envelhecimento , Animais , Camundongos , Camundongos Endogâmicos CBA , Gânglio Espiral da Cóclea
12.
Neurosci Res ; 158: 6-15, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31622631

RESUMO

Despite recent advances in genome engineering technologies, traditional transgenic mice generated on a mixed genetic background of C57BL/6 and 129/Sv mice remain widely used in age-related hearing loss (AHL) research, since C57BL/6 mice exhibit early onset and progression of AHL due to a mutation in cadherin 23-encoding gene (Cdh23753G>A). In these transgenic mice, backcrossing for more than 10 generations results in replacement of the donor background (129/Sv) with that of the recipient (C57BL/6), so that approximately 99.9% of genes are C57BL/6-derived and are considered congenic. However, the regions flanking the target gene may still be of 129/Sv origin, creating a so-called "passenger gene problem" where the normal 129/Sv-derived Cdh23753G allele can travel with the target gene. In this study, we investigated the role of fatty acid-binding protein 7 (Fabp7), which is important for cellular uptake and intracellular trafficking of fatty acids in the cochlea, using traditional Fabp7 knockout (KO) mice on the C57BL/6 background. We found that Fabp7 KO mice showed delayed AHL progression and milder cochlear degeneration. However, the genotype of the Cdh23 region flanking Fabp7 was still that of 129/Sv origin (Cdh23753GG). Our findings reveal the potential risk of contamination for traditional transgenic mice generated on the C57BL/6 background.


Assuntos
Presbiacusia , Animais , Caderinas/genética , Cóclea , Modelos Animais de Doenças , Audição , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
13.
Front Neurosci ; 13: 1255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824252

RESUMO

Usher's syndrome is the most common combined blindness-deafness disorder with USH1B, caused by mutations in MYO7A, resulting in the most severe phenotype. The existence of numerous, naturally occurring shaker1 mice harboring variable MYO7A mutations on different genetic backgrounds has complicated the characterization of MYO7A knockout (KO) and heterozygote mice. We generated a novel MYO7A KO mouse (Myo7a - / -) that is easily genotyped, maintained, and confirmed to be null for MYO7A in both the eye and inner ear. Like USH1B patients, Myo7a - / - mice are profoundly deaf, and display near complete loss of inner and outer cochlear hair cells (HCs). No gross structural changes were observed in vestibular HCs. Myo7a - / - mice exhibited modest declines in retinal function but, unlike patients, no loss of retinal structure. We attribute the latter to differential expression of MYO7A in mouse vs. primate retina. Interestingly, heterozygous Myo7a + / - mice had reduced numbers of cochlear HCs and concomitant reductions in auditory function relative to Myo7a +/+ controls. Notably, this is the first report that loss of a single Myo7a allele significantly alters auditory structure and function and suggests that audiological characterization of USH1B carriers is warranted. Maintenance of vestibular HCs in Myo7a - / - mice suggests that gene replacement could be used to correct the vestibular dysfunction in USH1B patients. While Myo7a - / - mice do not exhibit sufficiently robust retinal phenotypes to be used as a therapeutic outcome measure, they can be used to assess expression of vectored MYO7A on a null background and generate valuable pre-clinical data toward the treatment of USH1B.

14.
Nat Commun ; 10(1): 4150, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515474

RESUMO

Cisplatin is one of the most widely used chemotherapeutic drugs for the treatment of cancer. Unfortunately, one of its major side effects is permanent hearing loss. Here, we show that glutathione transferase α4 (GSTA4), a member of the Phase II detoxifying enzyme superfamily, mediates reduction of cisplatin ototoxicity by removing 4-hydroxynonenal (4-HNE) in the inner ears of female mice. Under cisplatin treatment, loss of Gsta4 results in more profound hearing loss in female mice compared to male mice. Cisplatin stimulates GSTA4 activity in the inner ear of female wild-type, but not male wild-type mice. In female Gsta4-/- mice, cisplatin treatment results in increased levels of 4-HNE in cochlear neurons compared to male Gsta4-/- mice. In CBA/CaJ mice, ovariectomy decreases mRNA expression of Gsta4, and the levels of GSTA4 protein in the inner ears. Thus, our findings suggest that GSTA4-dependent detoxification may play a role in estrogen-mediated neuroprotection.


Assuntos
Cisplatino/efeitos adversos , Glutationa Transferase/metabolismo , Ototoxicidade/enzimologia , Animais , Limiar Auditivo/efeitos dos fármacos , Capilares/patologia , Cóclea/enzimologia , Cóclea/patologia , Cóclea/fisiopatologia , Cruzamentos Genéticos , Dano ao DNA/genética , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/deficiência , Perda Auditiva/complicações , Perda Auditiva/enzimologia , Perda Auditiva/fisiopatologia , Masculino , Camundongos Endogâmicos CBA , Ototoxicidade/complicações , Ototoxicidade/patologia , Ototoxicidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/patologia
15.
Exp Gerontol ; 125: 110675, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344454

RESUMO

Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in a variety of age-related neurodegenerative diseases, including age-related hearing loss (AHL). In the current study, we investigated the roles of mtDNA deletions and point mutations in AHL in mitochondrial mutator mice (Polgmut/mut) that were backcrossed onto CBA/CaJ mice, a well-established model of late-onset AHL. mtDNA deletions accumulated significantly with age in the inner ears of Polgmut/mut mice, while there were no differences in mtDNA deletion frequencies in the inner ears between 5 and 17 months old Polg+/+ mice or 5 months old Polg+/+ and Polgmut/mut mice. mtDNA deletions also accumulated significantly in the inner ears of CBA/CaJ mice during normal aging. In contrast, 5 months old Polgmut/mut mice displayed a 238-fold increase in mtDNA point mutation frequencies in the inner ears compared to age-matched Polg+/+ mice, but there were no differences in mtDNA point mutation frequencies in the inner ears between 5 and 17 months old Polgmut/mut mice. Seventeen-month-old Polgmut/mut mice also displayed early-onset severe hearing loss associated with a significant reduction in neural output of the cochlea, while age-matched Polg+/+ mice displayed little or no hearing impairment. Consistent with the physiological and mtDNA deletion test result, 17-month-old Polgmut/mut mice displayed a profound loss of spiral ganglion neurons in the cochlea. Thus, our data suggest that a higher burden of mtDNA point mutations from a young age and age-related accumulation of mtDNA deletions likely contribute to early-onset AHL in mitochondrial mutator mice.


Assuntos
DNA Polimerase gama/genética , DNA Mitocondrial/química , Presbiacusia/genética , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação Puntual , Presbiacusia/patologia , Deleção de Sequência , Gânglio Espiral da Cóclea/patologia
16.
Sci Rep ; 8(1): 5039, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567975

RESUMO

Isocitrate dehydrogenase (IDH) 2 participates in the TCA cycle and catalyzes the conversion of isocitrate to α-ketoglutarate and NADP+ to NADPH. In the mitochondria, IDH2 also plays a key role in protecting mitochondrial components from oxidative stress by supplying NADPH to both glutathione reductase (GSR) and thioredoxin reductase 2 (TXNRD2). Here, we report that loss of Idh2 accelerates age-related hearing loss, the most common form of hearing impairment, in male mice. This was accompanied by increased oxidative DNA damage, increased apoptotic cell death, and profound loss of spiral ganglion neurons and hair cells in the cochlea of 24-month-old Idh2-/- mice. In young male mice, loss of Idh2 resulted in decreased NADPH redox state and decreased activity of TXNRD2 in the mitochondria of the inner ear. In HEI-OC1 mouse inner ear cell lines, knockdown of Idh2 resulted in a decline in cell viability and mitochondrial oxygen consumption. This was accompanied by decreased NADPH redox state and decreased activity of TXNRD2 in the mitochondria of the HEI-OC1 cells. Therefore, IDH2 functions as the principal source of NADPH for the mitochondrial thioredoxin antioxidant defense and plays an essential role in protecting hair cells and neurons against oxidative stress in the cochlea of male mice.


Assuntos
Envelhecimento/genética , Perda Auditiva/genética , Isocitrato Desidrogenase/genética , Tiorredoxina Redutase 2/genética , Envelhecimento/patologia , Animais , Apoptose/genética , Sobrevivência Celular/genética , Cóclea/metabolismo , Cóclea/patologia , Modelos Animais de Doenças , Glutationa Redutase/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADP/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia
17.
Sci Rep ; 7(1): 9785, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852116

RESUMO

Mitochondrial isocitrate dehydrogenase 2 (IDH2) converts NADP+ to NADPH and promotes regeneration of reduced glutathione (GSH) by supplying NADPH to glutathione reductase or thioredoxin reductase. We have previously shown that under calorie restriction, mitochondrial deacetylase Sirt3 deacetylates and activates IDH2, thereby regulating the mitochondrial glutathione antioxidant defense system in mice. To investigate the regulatory mechanism of mIDH2 (mouse mitochondrial IDH2), we used lysine-to-glutamine (KQ) mutants to mimic acetylated lysines and screened 15 KQ mutants. Among these mutants, the activities of the K256Q and K413Q proteins were less than 50% of the wild-type value. We then solved the crystal structures of the wild-type mIDH2 and the K256Q mutant proteins, revealing conformational changes in the substrate-binding pocket. Structural data suggested that positively charged Lys256 was important in stabilizing the pocket because it repelled a lysine cluster on the other side. Glutamine (or acetylated lysine) was neutral and thus caused the pocket size to decrease, which might be the main reason for the lower activity of the K256Q mutant. Together, our data provide the first structure of an acetylation mimic of mIDH2 and new insights into the regulatory mechanism of acetylation of mIDH2.


Assuntos
Regulação da Expressão Gênica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Acetilação , Animais , Ativação Enzimática , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/isolamento & purificação , Cinética , Lisina/metabolismo , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Neuroscience ; 361: 179-191, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28818524

RESUMO

Sestrin 2 (SESN2) is a stress-inducible protein that protects tissues from oxidative stress and delays the aging process. However, its role in maintaining the functional and structural integrity of the cochlea is largely unknown. Here, we report the expression of SESN2 protein in the sensory epithelium, particularly in hair cells. Using C57BL/6J mice, a mouse model of age-related cochlear degeneration, we observed a significant age-related reduction in SESN2 expression in cochlear tissues that was associated with early onset hearing loss and accelerated age-related sensory cell degeneration that progressed from the base toward the apex of the cochlea. Hair cell death occurred by caspase-8 mediated apoptosis. Compared to C57BL/6J control mice, Sesn2 KO mice displayed enhanced expression of proinflammatory genes and activation of basilar membrane macrophages, suggesting that loss of SESN2 function provokes the immune response. Together, these results suggest that Sesn2 plays an important role in cochlear homeostasis and immune responses to stress.


Assuntos
Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/metabolismo , Proteínas Nucleares/metabolismo , Envelhecimento , Animais , Membrana Basilar/metabolismo , Senescência Celular/fisiologia , Macrófagos/metabolismo , Camundongos Knockout , Proteínas Nucleares/deficiência , Peroxidases
19.
PLoS One ; 12(7): e0180817, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686716

RESUMO

Glutathione reductase (GSR), a key member of the glutathione antioxidant defense system, converts oxidized glutathione (GSSG) to reduced glutathione (GSH) and maintains the intracellular glutathione redox state to protect the cells from oxidative damage. Previous reports have shown that Gsr deficiency results in defects in host defense against bacterial infection, while diquat induces renal injury in Gsr hypomorphic mice. In flies, overexpression of GSR extended lifespan under hyperoxia. In the current study, we investigated the roles of GSR in cochlear antioxidant defense using Gsr homozygous knockout mice that were backcrossed onto the CBA/CaJ mouse strain, a normal-hearing strain that does not carry a specific Cdh23 mutation that causes progressive hair cell degeneration and early onset of hearing loss. Gsr-/- mice displayed a significant decrease in GSR activity and GSH/GSSG ratios in the cytosol of the inner ears. However, Gsr deficiency did not affect ABR (auditory brainstem response) hearing thresholds, wave I amplitudes or wave I latencies in young mice. No histological abnormalities were observed in the cochlea of Gsr-/- mice. Furthermore, there were no differences in the activities of cytosolic glutathione-related enzymes, including glutathione peroxidase and glutamate-cysteine ligase, or the levels of oxidative damage markers in the inner ears between WT and Gsr-/- mice. In contrast, Gsr deficiency resulted in increased activities of cytosolic thioredoxin and thioredoxin reductase in the inner ears. Therefore, under normal physiological conditions, GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea. Given that the thioredoxin system is known to reduce GSSG to GSH in multiple species, our findings suggest that the thioredoxin system can support GSSG reduction in the mouse peripheral auditory system.


Assuntos
Cóclea/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Glutationa Redutase/deficiência , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Animais , Antioxidantes/metabolismo , Feminino , Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Redutase/genética , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética
20.
J Neurosci ; 37(23): 5770-5781, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473643

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd-deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP+ to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1, but not G6pd, decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. In the current study, we show that, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in the mouse cochlea. However, under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.


Assuntos
Antioxidantes/metabolismo , Percepção Auditiva/fisiologia , Cóclea/fisiopatologia , Deficiência de Glucosefosfato Desidrogenase/fisiopatologia , Glutationa/metabolismo , Tiorredoxinas/metabolismo , Animais , Citosol/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA