Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 49(5): 853-866, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526893

RESUMO

In nature, mosshead sculpins (Clinocottus globiceps) are challenged by fluctuations in temperature and oxygen levels in their environment. However, it is unclear how mosshead sculpins modulate the permeability of their branchial epithelia to water and O2 in response to temperature or hypoxia stress. Acute decrease in temperature from 13 to 6 oC reduced diffusive water flux rate by 22% and MO2 by 51%, whereas acute increase in temperature from 13 to 25 oC increased diffusive water flux rate by 217% and MO2 by 140%, yielding overall Q10 values of 2.08 and 2.47 respectively. Acute reductions in oxygen tension from >95% to 20% or 10% air saturation did not impact diffusive water flux rates, however, MO2 was reduced significantly by 36% and 65% respectively. During 1-h or 3-h recovery periods diffusive water flux rates were depressed while MO2 exhibited overshoots beyond the normoxic control level. Many responses differed from those seen in our parallel earlier study on the tidepool sculpin, a cottid with similar hypoxia tolerance but much smaller gill area that occupies a similar environment. Overall, our data suggest that during temperature stress, diffusive water flux rates and MO2 follow the traditional osmo-respiratory compromise pattern, but during hypoxia and re-oxygenation stress, diffusive water flux rates are decoupled from MO2.


Assuntos
Perciformes , Água , Animais , Consumo de Oxigênio/fisiologia , Temperatura , Hipóxia , Oxigênio
2.
J Comp Physiol B ; 193(4): 425-438, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149515

RESUMO

The gill oxygen limitation hypothesis (GOLH) suggests that hypometric scaling of metabolic rate in fishes is a consequence of oxygen supply constraints imposed by the mismatched growth rates of gill surface area (a two-dimensional surface) and body mass (a three-dimensional volume). GOLH may, therefore, explain the size-dependent spatial distribution of fish in temperature- and oxygen-variable environments through size-dependent respiratory capacity, but this question is unstudied. We tested GOLH in the tidepool sculpin, Oligocottus maculosus, a species in which body mass decreases with increasing temperature- and oxygen-variability in the intertidal, a pattern consistent with GOLH. We statistically evaluated support for GOLH versus distributed control of [Formula: see text] allometry by comparing scaling coefficients for gill surface area, standard and maximum [Formula: see text] ([Formula: see text],Standard and [Formula: see text],Max, respectively), ventricle mass, hematocrit, and metabolic enzyme activities in white muscle. To empirically evaluate whether there is a proximate constraint on oxygen supply capacity with increasing body mass, we measured [Formula: see text],Max across a range of Po2s from normoxia to Pcrit, calculated the regulation value (R), a measure of oxyregulatory capacity, and analyzed the R-body mass relationship. In contrast with GOLH, gill surface area scaling either matched or was more than sufficient to meet [Formula: see text] demands with increasing body mass and R did not change with body mass. Ventricle mass (b = 1.22) scaled similarly to [Formula: see text],Max (b = 1.18) suggesting a possible role for the heart in the scaling of [Formula: see text],Max. Together our results do not support GOLH as a mechanism structuring the distribution of O. maculosus and suggest distributed control of oxyregulatory capacity.


Assuntos
Brânquias , Oxigênio , Animais , Consumo de Oxigênio , Peixes/fisiologia , Temperatura
3.
Biol Lett ; 18(12): 20220342, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36475421

RESUMO

The critical oxygen tension of whole-animal oxygen uptake rate, or Pcrit, has historically been defined as the oxygen partial pressure (PO2) at which aerobic scope falls to zero and further declines in PO2 require substrate-level phosphorylation to meet shortfalls in aerobic ATP production, thereby time-limiting survival. Despite the inclusion of aerobic scope and anaerobic ATP production in the definition, little effort has been made to verify that Pcrit measurements, the vast majority of which are obtained using respirometry in resting animals, actually reflect the predictions of zero aerobic scope and a transition to increasing reliance on anaerobic ATP production. To test these predictions, we compared aerobic scope and levels of whole-body lactate at oxygen partial pressures (PO2s) bracketing Pcrit obtained in resting fish during progressive hypoxia in the tidepool sculpin, Oligocottus maculosus. We found that aerobic scope falls to zero at Pcrit and, in resting fish exposed to PO2s < Pcrit, whole-body lactate accumulated pointing to an increased reliance on anaerobic ATP production. These results support the interpretation of Pcrit as a key oxygen threshold at which aerobic scope falls to nil and, below Pcrit, survival is time-limited based on anaerobic metabolic capacity.


Assuntos
Trifosfato de Adenosina , Oxigênio
4.
Artigo em Inglês | MEDLINE | ID: mdl-32763468

RESUMO

The osmorespiratory compromise hypothesis posits that respiratory epithelial characteristics and physiological regulatory mechanisms which promote gas permeability also increase permeability to ions and water. The hypothesis therefore predicts that physiological responses which increase effective gas permeability will result in increased effective ion and water permeabilities. Though analyses of water and gas effective permeabilities using high temperature have generally supported the hypothesis, water permeability responses to hypoxia remain equivocal and the combination of high temperature and hypoxia untested. We measured diffusive water flux (DWF) and oxygen uptake rate (Mo2) in response to acute temperature change, hypoxia, and the combination of high temperature and hypoxia in a hypoxia-tolerant intertidal fish, the tidepool sculpin (Oligocottus maculosus). In support of the osmorespiratory compromise hypothesis, Mo2 and DWF increased with temperature. In contrast, DWF decreased with hypoxia at a constant temperature, a result consistent with previously observed decoupling of water and gas effective permeabilities during hypoxia exposure in some hypoxia tolerant fishes. However, DWF levels during simultaneous high temperature and hypoxia exposure were not different from fish exposed to high temperature in normoxia, possibly suggesting a failure of the mechanism responsible for down-regulating DWF in hypoxia. These results, together with time-course analysis of hypoxia exposure and normoxic recovery, suggest that tidepool sculpins actively downregulate effective water permeability in hypoxia but the mechanism fails with multi-stressor exposure. Future investigations of the mechanistic basis of the regulation of gill permeability will be key to understanding the role of this regulatory ability in the persistence of this species in the dynamic intertidal environment.


Assuntos
Peixes/fisiologia , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Temperatura , Água/metabolismo , Animais , Difusão
5.
Physiol Biochem Zool ; 88(5): 471-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658245

RESUMO

Developmental increases in dive capacity have been reported in numerous species of air-breathing marine vertebrates. Previous studies in juvenile phocid seals suggest that increases in physiological dive capacity during the postweaning fast (PWF) are critical to support independent aquatic foraging. Although there is a strong relationship between size at weaning and PWF duration and body reserves at weaning vary considerably, few studies have considered whether such variation in body reserve magnitude promotes phenotypic modulation of dive capacity development during the PWF. Phenotypic modulation, a form of developmental plasticity in which rates and degrees of expression of the developmental program are modulated by environmental factors, may enhance diving capacity in weanlings with reduced PWF durations due to smaller body reserves at weaning if reduced body reserves promote accelerated development of dive capacity. We longitudinally measured changes in blood and muscle oxygen stores and muscle metabolic enzymes over the first 8 wk of the PWF in northern elephant seals and determined whether rates of change in these parameters varied with body reserves at weaning. We assessed whether erythropoietin (EPO), thyroid hormones, serum nonesterified fatty acid levels, and iron status influenced blood and muscle oxygen store development or were influenced by body reserves at weaning. Although mass-specific plasma volume and blood volume were relatively stable across the fast, both were elevated in animals with reduced body reserves. Surprisingly, hemoglobin and mean corpuscular hemoglobin concentrations declined over the PWF while hematocrit remained stable, and these variables were not associated with body reserves or EPO. Swimming muscle myoglobin and serum iron levels increased rapidly early in the PWF and were not related to body reserves. Patterns in maximal activities of muscle enzymes suggested a decline in total aerobic and anaerobic metabolic capacity over the PWF, despite maintenance of fat oxidation capacity. These results suggest that only development of blood volume is increased in smaller weanlings and that extended fasting durations in larger weanlings do not improve physiological dive capacity.


Assuntos
Mergulho/fisiologia , Oxigênio/metabolismo , Focas Verdadeiras/fisiologia , Animais , Volume Sanguíneo , Eritropoetina/análise , Jejum/fisiologia , Ácidos Graxos não Esterificados/sangue , Hemoglobinas/análise , Ferro/sangue , Músculo Esquelético/química , Músculo Esquelético/enzimologia , Mioglobina/análise , Fenótipo , Focas Verdadeiras/crescimento & desenvolvimento , Hormônios Tireóideos/sangue , Desmame
6.
Gen Comp Endocrinol ; 204: 150-7, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24798580

RESUMO

Strong individual and life-history variation in serum glucocorticoids has been documented in many wildlife species. Less is known about variation in hypothalamic-pituitary-adrenal (HPA) axis responsiveness and its impact on metabolism. We challenged 18 free-ranging adult male northern elephant seals (NES) with an intramuscular injection of slow-release adrenocorticotropic hormone (ACTH) over 3 sample periods: early in the breeding season, after 70+ days of the breeding fast, and during peak molt. Subjects were blood sampled every 30 min for 2h post-injection. Breeding animals were recaptured and sampled at 48 h. In response to the ACTH injection, cortisol increased 4-6-fold in all groups, and remained elevated at 48 h in early breeding subjects. ACTH was a strong secretagogue for aldosterone, causing a 3-8-fold increase in concentration. Cortisol and aldosterone responses did not vary between groups but were correlated within individuals. The ACTH challenge produced elevations in plasma glucose during late breeding and molting, suppressed testosterone and thyroid hormone at 48 h in early breeding, and increased plasma non-esterified fatty acids and ketoacids during molting. These data suggest that sensitivity of the HPA axis is maintained but the metabolic impacts of cortisol and feedback inhibition of the axis vary with life history stage. Strong impacts on testosterone and thyroid hormone suggest the importance of maintaining low cortisol levels during the breeding fast. These data suggest that metabolic adaptations to extended fasting in NES include alterations in tissue responses to hormones that mitigate deleterious impacts of acute or moderately sustained stress responses.


Assuntos
Hormônio Adrenocorticotrópico/farmacologia , Hormônios/farmacologia , Hidrocortisona/sangue , Estágios do Ciclo de Vida/efeitos dos fármacos , Focas Verdadeiras/metabolismo , Adulto , Animais , Jejum/fisiologia , Ácidos Graxos não Esterificados/sangue , Humanos , Masculino , Focas Verdadeiras/crescimento & desenvolvimento , Testosterona/sangue , Hormônios Tireóideos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA