Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Neurosci ; 17: 1285359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292901

RESUMO

Background: Target organ toxicity is often a reason for attritions in nonclinical and clinical drug development. Leveraging emerging safety biomarkers in nonclinical studies provides an opportunity to monitor such toxicities early and efficiently, potentially translating to early clinical trials. As a part of the European Union's Innovative Medicines Initiative (IMI), two projects have focused on evaluating safety biomarkers of nervous system (NS) toxicity: Translational Safety Biomarker Pipeline (TransBioLine) and Neurotoxicity De-Risking in Preclinical Drug Discovery (NeuroDeRisk). Methods: Performance of fluid-based NS injury biomarker candidates neurofilament light chain (NF-L), glial fibrillary acidic protein (GFAP), neuron specific enolase (NSE) and total Tau in plasma and cerebrospinal fluid (CSF) was evaluated in 15 rat in vivo studies. Model nervous system toxicants as well as other compounds were used to evaluate sensitivity and specificity. Histopathologic assessments of nervous tissues and behavioral observations were conducted to detect and characterize NS injuries. Receiver operator characteristic (ROC) curves were generated to compare the relative performance of the biomarkers in their ability to detect NS injury. Results: NF-L was the best performer in detecting both peripheral nervous system (PNS) and CNS injury in plasma, (AUC of 0.97-0.99; respectively). In CSF, Tau correlated the best with CNS (AUC 0.97), but not PNS injury. NSE and GFAP were suitable for monitoring CNS injury, but with lesser sensitivity. In summary, NF-L is a sensitive and specific biomarker in rats for detecting compound-induced central and peripheral NS injuries. While NF-L measurement alone cannot inform the site of the injury, addition of biomarkers like Tau and NSE and analysis in both blood and CSF can provide additional information about the origin of the NS injury. Conclusion: These results demonstrate the utility of emerging safety biomarkers of drug-induced NS injury in rats and provide additional supporting evidence for biomarker translation across species and potential use in clinical settings to monitor drug-induced NS injury in patients.

2.
Mol Ther Methods Clin Dev ; 25: 264-277, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35505662

RESUMO

Adeno-associated virus (AAV)-induced dorsal root ganglia (DRG) toxicity has been observed in several nonclinical species, where lesions are characterized by neuronal degeneration/necrosis, nerve fiber degeneration, and mononuclear cell infiltration. As AAV vectors become an increasingly common platform for novel therapeutics, non-invasive biomarkers are needed to better characterize and manage the risk of DRG neurotoxicity in both nonclinical and clinical studies. Based on biological relevance, reagent availability, antibody cross-reactivity, DRG protein expression, and assay performance, neurofilament light chain (NF-L) emerged as a promising biomarker candidate. Dose- and time-dependent changes in NF-L were evaluated in male Wistar Han rats and cynomolgus monkeys following intravenous or intrathecal AAV injection, respectively. NF-L profiles were then compared against microscopic DRG lesions on day 29 post-dosing. In animals exhibiting DRG toxicity, plasma/serum NF-L was strongly associated with the severity of neuronal degeneration/necrosis and nerve fiber degeneration, with elevations beginning as early as day 8 in rats (≥5 × 1013 vg/kg) and day 14 in monkeys (≥3.3 × 1013 vg/dose). Consistent with the unique positioning of DRGs outside the blood-brain barrier, NF-L in cerebrospinal fluid was only weakly associated with DRG findings. In summary, circulating NF-L is a promising biomarker of AAV-induced DRG toxicity in nonclinical species.

3.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133982

RESUMO

BACKGROUNDPaclitaxel chemotherapy frequently induces dose-limiting sensory axonal polyneuropathy. Given that sensory symptoms are challenging to assess objectively in clinical practice, an easily accessible biomarker for chemotherapy-induced polyneuropathy (CIPN) holds the potential to improve early diagnosis. Here, we describe neurofilament light chain (NFL), a marker for neuroaxonal damage, as a translational surrogate marker for CIPN.METHODSNFL concentrations were measured in an in vitro model of CIPN, exposing induced pluripotent stem cell-derived sensory neurons (iPSC-DSNs) to paclitaxel. Patients with breast or ovarian cancer undergoing paclitaxel chemotherapy, breast cancer control patients without chemotherapy, and healthy controls were recruited in a cohort study and examined before chemotherapy (V1) and after 28 weeks (V2, after chemotherapy). CIPN was assessed by the validated Total Neuropathy Score reduced (TNSr), which combines patient-reported symptoms with data from clinical examinations. Serum NFL (NFLs) concentrations were measured at both visits with single-molecule array technology.RESULTSNFL was released from iPSC-DSNs upon paclitaxel incubation in a dose- and time-dependent manner and was inversely correlated with iPSC-DSN viability. NFLs strongly increased in paclitaxel-treated patients with CIPN, but not in patients receiving chemotherapy without CIPN or controls, resulting in an 86% sensitivity and 87% specificity. An NFLs increase of +36 pg/mL from baseline was associated with a predicted CIPN probability of more than 0.5.CONCLUSIONNFLs was correlated with CIPN development and severity, which may guide neurotoxic chemotherapy in the future.TRIAL REGISTRATIONClinicalTrials.gov NCT02753036.FUNDINGDeutsche Forschungsgemeinschaft (EXC 257 NeuroCure), BMBF (Center for Stroke Research Berlin, 01 EO 0801), Animalfree Research, EU Horizon 2020 Innovative Medicines Initiative 2 Joint Undertaking (TransBioLine, 821283), Charité 3R - Replace - Reduce - Refine.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Polineuropatias , Antineoplásicos/efeitos adversos , Biomarcadores , Estudos de Coortes , Humanos , Proteínas de Neurofilamentos , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/diagnóstico , Polineuropatias/induzido quimicamente , Polineuropatias/diagnóstico
4.
Toxicol In Vitro ; 70: 105012, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33049313

RESUMO

Alveolar type II (ATII) epithelial cells contain lamellar bodies (LBs) which synthesize and store lung surfactants. In animals, the inhibition or knockout of leucine-rich repeat kinase 2 (LRRK2) causes abnormal enlargement of LBs in ATII cells. This effect of LRRK2 inhibition in lung is largely accepted as being mediated directly through blocking of the kinase function; however, downstream consequences in the lung remain unknown. In this work we established an in vitro alveolar epithelial cell (AEC) model that recapitulates the in vivo phenotype of ATII cells and developed an assay to quantify changes in LB size in response to LRRK2 inhibitors. Culture of primary human AECs at the air-liquid interface on matrigel and collagen-coated transwell inserts in the presence of growth factors promoted the LB formation and apical microvilli and induced expression of LRRK2 and ATII cell markers. Treatment with a selective LRRK2 inhibitor resulted in pharmacological reduction of phospho-LRRK2 and a significant increase in LB size; effects previously reported in lungs of non-human primates treated with LRRK2 inhibitor. In summary, our human in vitro AEC model recapitulates the abnormal lung findings observed in LRRK2-perturbed animals and holds the potential for expanding current understanding of LRRK2 function in the lung.


Assuntos
Células Epiteliais Alveolares/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Modelos Biológicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/ultraestrutura , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo
5.
Toxicol Pathol ; 48(1): 228-237, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30987556

RESUMO

The potential for neurogenesis in the cranial (superior) cervical ganglia (SCG) of the sympathetic nervous system was evaluated. Eleven consecutive daily doses of guanethidine (100 mg/kg/d) were administered intraperitoneally to rats in order to destroy postganglionic sympathetic neurons in SCG. Following the last dose, animals were allowed to recover 1, 3, or 6 months. Right and left SCG from guanethidine-treated and age-matched, vehicle-treated control rats were harvested for histopathologic, morphometric, and stereologic evaluations. Both morphometric and stereologic evaluations confirmed neuron loss following guanethidine treatment. Morphometric analysis revealed a 50% to 60% lower number of tyrosine hydroxylase (TH)-positive neurons per unit area of SCG at both 3 and 6 months of recovery, compared to ganglia of age-matched controls, with no evidence of restoration of neuron density between 3 and 6 months. Reductions in TH-positive neurons following guanethidine treatment were corroborated by unbiased stereology of total hematoxylin and eosin-stained neuron numbers in SCG. Stereologic analyses revealed that total neuron counts were lower by 37% at 3 months of recovery when compared to age-matched vehicle controls, again with no obvious restoration between 3 and 6 months. Thus, no evidence was found that postganglionic neurons of the sympathetic nervous system in the adult rat have a neurogenic capacity.


Assuntos
Gânglios Simpáticos/fisiologia , Guanetidina/toxicidade , Neurogênese , Simpatolíticos/toxicidade , Animais , Degeneração Neural , Neurônios , Ratos , Sistema Nervoso Simpático , Tirosina 3-Mono-Oxigenase
6.
Int J Toxicol ; 32(3): 171-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23616147

RESUMO

The eye is a unique sensory structure, which must be evaluated for toxicity to determine the safety of drugs, industrial chemicals, and consumer products. Changes in the structure and/or function of ocular tissues following systemic administration of a potential new drug in preclinical animal models can result in significant delays in the development of a new therapeutic and in some cases lead to termination of the development. The ability to detect and characterize ocular toxicity in preclinical models and to predict risk in patients is critically dependent on the preclinical testing strategy, the availability and use of state-of-the-art ocular safety assessment tools, and the knowledge of drug mechanism of action and the current regulatory environment. This review describes the design and execution of toxicity studies with the incorporation of current methods for in vivo assessment of ocular toxicity, including methods for detecting early changes in the eye. In addition, anatomical differences among laboratory animals, preparation of globes for examination, and iatrogenic and spontaneous ocular findings are described that can affect interpretation of toxicological findings. Finally, the correlation between nonclinical outcomes and clinical evaluations is discussed in terms of expected therapeutic uses, indications, and regulatory consequences of ocular effects.


Assuntos
Olho/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Xenobióticos/administração & dosagem , Xenobióticos/toxicidade , Animais , Avaliação Pré-Clínica de Medicamentos/métodos
7.
Toxicol Sci ; 113(1): 254-66, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19812364

RESUMO

To understand the molecular mechanisms underlying compound-induced hemangiosarcomas in mice, and therefore, their human relevance, a systems biology approach was undertaken using transcriptomics and Causal Network Modeling from mice treated with 2-butoxyethanol (2-BE). 2-BE is a hemolytic agent that induces hemangiosarcomas in mice. We hypothesized that the hemolysis induced by 2-BE would result in local tissue hypoxia, a well-documented trigger for endothelial cell proliferation leading to hemangiosarcoma. Gene expression data from bone marrow (BM), liver, and spleen of mice exposed to a single dose (4 h) or seven daily doses of 2-BE were used to develop a mechanistic model of hemangiosarcoma. The resulting mechanistic model confirms previous work proposing that 2-BE induces macrophage activation and inflammation in the liver. In addition, the model supports local tissue hypoxia in the liver and spleen, coupled with increased erythropoeitin signaling and erythropoiesis in the spleen and BM, and suppression of mechanisms that contribute to genomic stability, events that could be contributing factors to hemangiosarcoma formation. Finally, an immunohistochemistry method (Hypoxyprobe) demonstrated that tissue hypoxia was present in the spleen and BM. Together, the results of this study identify molecular mechanisms that initiate hemangiosarcoma, a key step in understanding safety concerns that can impact drug decision processes, and identified hypoxia as a possible contributing factor for 2-BE-induced hemangiosarcoma in mice.


Assuntos
Medula Óssea/metabolismo , Transformação Celular Neoplásica/metabolismo , Hemangiossarcoma/metabolismo , Fígado/metabolismo , Modelos Biológicos , Transdução de Sinais , Baço/metabolismo , Biologia de Sistemas , Animais , Medula Óssea/patologia , Ciclo Celular , Diferenciação Celular , Hipóxia Celular , Proliferação de Células , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Eritropoese , Eritropoetina/metabolismo , Etilenoglicóis , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Hemangiossarcoma/induzido quimicamente , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Células-Tronco Hematopoéticas/metabolismo , Hemólise , Hepatite/metabolismo , Hepatite/patologia , Imuno-Histoquímica , Fígado/patologia , Ativação de Macrófagos , Masculino , Camundongos , Baço/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA