Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Evid Based Integr Med ; 28: 2515690X221150526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617811

RESUMO

Malaria-associated cardiac injury has been reported to be the primary cause of death due to severe malaria. The discovery of substances showing a protective effect on cardiac injury during malaria infection is urgently needed. Hence, the purpose of this study was to evaluate the efficacy of Gymnema inodorum leaf extract (GIE) on cardiac function in mice infected with Plasmodium berghei. ICR mice were treated with 1 × 107 infected red blood cells of P. berghei ANKA (PbANKA), administered orally with GIE in 100, 250 and 500 mg/kg body weight of mice. Creatine phosphokinase (CPK) and echocardiography were carried out. It was found that CPK and heart-weight to body-weight (HW/BW) ratios were significantly higher in untreated mice than the healthy control. Moreover, impaired cardiac function in the untreated group was observed as indicated by changes in echocardiography. Interestingly, GIE exerted a protective effect on cardiac injury induced by PbANKA infection. Our results demonstrated that the parasitemia percentage, CPK, HW/BW ratio, and echocardiography in GIE treated mice were improved. However, there was no significant difference between GIE dosages. Therefore, GIE possessed a cardio-protective effect during malaria infection in mice.


Assuntos
Malária , Plasmodium berghei , Animais , Camundongos , Extratos Vegetais/farmacologia , Camundongos Endogâmicos ICR , Malária/tratamento farmacológico , Eritrócitos
2.
BMC Complement Med Ther ; 23(1): 20, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690988

RESUMO

BACKGROUND: Chemotherapy is crucial in the fight against malaria. The rise of resistance to most antimalarial medicines has been a serious hurdle to effective treatment. Artemisinin-based combination therapies (ACTs) are currently the most effective antimalarial medication. Malaria parasites are growing more resistant to ACTs, particularly in Southeast Asia. As a result, effective alternative antimalarials are in high demand. The leaf extract of Gymnema inodorum (GIE) has previously shown promise as an effective antimalarial. Therefore, this study evaluated the antimalarial potential of combination dihydroartemisinin (DHA) and GIE therapy against Plasmodium berghei in a mouse model. METHODS: The medications were evaluated using the standard 4-day test for determining the 50% effective dosage (ED50) of DHA and GIE on P. berghei ANKA (PbANKA). DHA and GIE were combined using a fixed-ratio approach, with DHA/GIE ED50s of 100/0, 80/20, 60/40, 40/60, 20/80, and 0/100, respectively. RESULTS: The ED50 against PbANKA was determined to be 2 mg/kg of DHA and 100 mg/kg of GIE. The 60/40 (DHA/GIE) ratio demonstrated significantly higher antimalarial activity than the other ratios (p < 0.001) against PbANKA, with 88.95% inhibition, suggesting synergistic efficacy (combination index (CI) = 0.68695). Furthermore, this ratio protected PbANKA-infected mice against loss of body weight and packed cell volume decline, leading to a longer survival time over 30 days. CONCLUSION: Our results suggest that GIE could be an effective adjuvant to DHA that can enhance the antimalarial effects in the treatment of PbANKA-infected mice.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Plasmodium berghei , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia
3.
Front Immunol ; 14: 1275001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187378

RESUMO

Significance: This review discusses the coronavirus disease 2019 (COVID-19) pathophysiology in the context of diabetes and intracellular reactions by COVID-19, including mitochondrial oxidative stress storms, mitochondrial ROS storms, and long COVID. Recent advances: The long COVID is suffered in ~10% of the COVID-19 patients. Even the virus does not exist, the patients suffer the long COVID for even over a year, This disease could be a mitochondria dysregulation disease. Critical issues: Patients who recover from COVID-19 can develop new or persistent symptoms of multi-organ complications lasting weeks or months, called long COVID. The underlying mechanisms involved in the long COVID is still unclear. Once the symptoms of long COVID persist, they cause significant damage, leading to numerous, persistent symptoms. Future directions: A comprehensive map of the stages and pathogenetic mechanisms related to long COVID and effective drugs to treat and prevent it are required, which will aid the development of future long COVID treatments and symptom relief.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Espécies Reativas de Oxigênio , Mitocôndrias , Estresse Oxidativo
4.
Bioinorg Chem Appl ; 2022: 3869337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466999

RESUMO

Free heme in plasma acts as a prooxidant; thus, it is bound to hemopexin and eliminated by the liver. High iron content in the liver can support Plasmodium growth and cause oxidative liver injury. Inversely, the withholding of excessive iron can inhibit this growth and protect the liver against malaria infection. This study examined the effects of a deferiprone-resveratrol (DFP-RVT) hybrid on malaria parasites and its relevant hepatoprotective properties. Mice were infected with P. berghei, gavage DFP-RVT, deferiprone (DFP), and pyrimethamine (PYR) for 8 consecutive days. Blood and liver parameters were then evaluated. The presence of blood-stage parasites was determined using the microscopic Giemsa staining method. Subsequently, plasma liver enzymes, heme, and concentrations of thiobarbituric acid-reactive substances (TBARS) were determined. The liver tissue was examined pathologically and heme and TBARS concentrations were then quantified. The results indicate that the suppression potency against P. berghei growth occurred as follows: PYR > DFP-RVT hybrid > DFP. Importantly, DFP-RVT significantly improved RBC size, restored alanine aminotransferase and alkaline activities, and increased heme and TBARS concentrations. The compound also reduced the liver weight index, heme, and TBARS concentrations significantly when compared to mice that were untreated. Our findings support the contention that the hepatoprotective effect of DFP-RVT is associated with parasite burden, iron depletion, and lipid peroxidation in the host.

5.
Vet Med Int ; 2022: 7626618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479191

RESUMO

Malaria is still a significant health problem in endemic countries and increases Plasmodium resistance to the available antimalarial drugs. Hence, this study aimed to investigate the antimalarial activity of allicin and its combination with artesunate (ART) against rodent malaria Plasmodium berghei ANKA (PbANKA) infected mice. Allicin was prepared in 20% Tween-80. Balb/c mice were inoculated intraperitoneally with 1×107 PbANKA-infected erythrocytes and orally given by gavage with the chosen doses of 1, 10, 50, and 100 mg/kg of allicin and 1, 5, 10, and 20 mg/kg of ART once a day for 4 consecutive days. Effective dose 50 (ED50) of allicin and ART was subsequently investigated. Moreover, the combination (1 : 1) of allicin and ART at the doses of their respective ED50, ED50 1/2, ED50 1/4, and ED50 1/8 was also carried out. The untreated control was given 20% Tween-80. The results showed that allicin presented a dose-dependent antimalarial activity with significance (p < 0.05). The ED50 values of allicin and ART were about 14 and 5 mg/kg, respectively. For combination, allicin and ART showed a synergistic effect at the combination doses of ED50, ED50 1/2, and ED50 1/4 with significantly (p < 0.01) prevented reduction of packed cell volume, bodyweight loss, rapid dropping of rectal temperature, and markedly prolonged mean survival time, compared with the untreated control and single treatment. It can be concluded that allicin exerted potential antimalarial activity in single and its combination with ART.

6.
J Parasitol Res ; 2022: 4225682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310010

RESUMO

Malaria remains highly prevalent and one of the major causes of morbidity and mortality in tropical and subtropical regions. Alteration of blood coagulation and platelets has played an important role and attributed to increased morbidity in malaria. Hence, this study was performed to investigate the efficacy of Gymnema inodorum leaf extract on Plasmodium berghei-induced alteration of blood coagulation parameters and platelet numbers in mice. Groups of ICR mice were inoculated with 1 × 107 parasitized red blood cells of P. berghei ANKA (PbANKA) and given orally by gavage with 100, 250, and 500 mg/kg of G. inodorum leaf extract (GIE). Chloroquine (10 mg/kg) was used as a positive control. Platelet count and blood coagulation parameters were measured. The results showed that PbANKA induced thrombocytopenia in mice as indicated by markedly decreased platelet count. Decreased platelet count had a negative correlation with the degree of parasitemia with R 2 value of 0.6668. Moreover, significantly (p < 0.05) shortened activated partial thromboplastin time was found in PbANKA-infected group, while prothrombin time and thrombin time were still normal. GIE gave significantly (p < 0.05) good results with respect to platelet count, compared with the results obtained from positive and healthy controls. Additionally, GIE reversed the alteration of blood coagulation parameters when compared to untreated mice. The highest efficacy of GIE was observed at a dose of 500 mg/kg. It was concluded that GIE exerted a protective effect on thrombocytopenia and altered blood coagulation parameters induced by PbANKA infection in mice. This plant may be a future candidate for alternative antimalarial development.

7.
J Parasitol Res ; 2021: 1896997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552764

RESUMO

Malaria complications are the most frequent cause of mortality from parasite infection. This study is aimed at investigating the protective effect of Gymnema inodorum leaf extract (GIE) on hypoglycemia, dyslipidemia, liver damage, and acute kidney injury induced by Plasmodium berghei infection in mice. Groups of ICR mice were inoculated with 1 × 107 parasitized erythrocytes of P. berghei ANKA and administered orally by gavage with 100, 250, and 500 mg/kg of GIE for 4 consecutive days. Healthy and untreated controls were given distilled water, while the positive control was treated with 10 mg/kg of chloroquine. The results showed that malaria-associated hypoglycemia, dyslipidemia, liver damage, and acute kidney injury were found in the untreated mice as indicated by the significant alteration of biological markers. On the contrary, in 250 and 500 mg/kg of GIE-treated mice, the biological markers were normal compared to healthy controls. The highest protective effect was found at 500 mg/kg similar to the CQ-treated group. However, GIE at a dose of 100 mg/kg did not show protection during malaria infection. This study demonstrated that GIE presented potential therapeutic effects on PbANKA-induced hypoglycemia, dyslipidemia, liver damage, and acute kidney injury. The results obtained confirm the prospect of G. inodorum as an essential source of new antimalarial compounds and justify folkloric use as an alternative malarial treatment.

8.
Biology (Basel) ; 10(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34571788

RESUMO

Iron is essential for all organisms including fast-dividing malarial parasites. Inversely, iron chelators can inhibit parasite growth through the inhibition of DNA synthesis and can ameliorate oxidative cell damage. Deferiprone (DFP)-resveratrol (RVT) hybrid (DFP-RVT) is a lipophilic anti-oxidative, iron-chelating agent that has displayed potent neuroprotective and anti-plasmodium activities in vitro. The goal of this work was to investigate the inhibitory effects of DFP-RVT on parasite growth and oxidative stress levels during malaria infections. Mice were intraperitoneally infected with P. berghei and orally administered with DFP, DFP-RVT and pyrimethamine for 4 d. The percentage of parasitemia was determined using Giemsa's staining/microscopic examination. Amounts of the lipid-peroxidation product, thiobarbituric acid-reactive substance (TBARS), were determined in both plasma and liver tissue. In our findings, DFP-RVT exhibited a greater potent inhibitory effect and revealed an improvement in anemia and liver damage in infected mice than DFP. To this point, the anti-malarial activity was found to be associated with anti-RBC hemolysis and the liver weight index. In addition, plasma and liver TBARS levels in the DFP-RVT-treated mice were lower than those in DFP-treated mice. Thus, DFP-RVT could exert anti-plasmodium, anti-hemolysis and anti-lipid peroxidation activities to a better degree than DFP in P. berghei-infected mice.

9.
J Trop Med ; 2021: 9989862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257672

RESUMO

Malaria remains a significant cause of death in tropical and subtropical regions by serious complications with hematological abnormalities consistent with high parasitemia. Hence, this study aimed to determine the efficacy of the Gymnema inodorum leaf extract (GIE) on hematological alteration in Plasmodium berghei infection in mice. Groups of ICR mice were infected intraperitoneally with parasitized red blood cells of P. berghei ANKA (PbANKA). They were administered orally by gavage of 100, 250, and 500 mg/kg of GIE for 4 consecutive days. Healthy and untreated groups were given distilled water, while 10 mg/kg of chloroquine was treated as the positive control. Hematological parameters including RBC count, hemoglobin (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), RBC distribution width (RDW), white blood cell (WBC) count, and WBC differential count were measured. The results showed that significant decreases of RBC count, Hb, Hct, MCV, MCH, MCHC, and reticulocytes were observed in the untreated group, while RDW was significantly increased compared with the healthy control. Furthermore, the WBC, neutrophil, monocyte, basophil, and eosinophil of untreated mice increased significantly, while the lymphocyte was significantly decreased compared with the healthy control. Interestingly, GIE normalized the hematological alteration induced by PbANKA infection in GIE-treated groups compared with healthy and untreated groups. The highest efficacy of GIE was observed at a dose of 500 mg/kg. Our results confirmed that GIE presented the potential role in the treatment of hematological alteration during malaria infection.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33995550

RESUMO

Malaria is still a serious cause of mortality and morbidity. Moreover, the emergence of malaria parasite resistance to antimalarial drugs has prompted the search for new, effective, and safe antimalarial agents. For this reason, the study of medicinal plants in discovering new antimalarial drugs is important and remains a crucial step in the fight against malaria. Hence, this study is aimed at investigating the antimalarial activity of Gymnema inodorum leaf extract (GIE) in Plasmodium berghei infected mice. Aqueous crude extract of G. inodorum leaves was prepared in distilled water (DW) and acute toxicity in mice was carried out. The antimalarial activity was assessed in the five groups of ICR mice employing the 4-day suppressive and curative tests. Untreated and positive controls were given DW along with 10 mg/kg of chloroquine, respectively. Any signs of toxicity, behavioral changes, and mortality were not observed in mice given GIE up to 5,000 mg/kg. GIE significantly (P < 0.05) suppressed parasitemia by 25.65%, 38.12%, and 58.28% at 10, 50, and 100 mg/kg, respectively, in the 4-day suppressive test. In the curative test, the highest parasitemia inhibition of 66.78% was observed at 100 mg/kg of GIE. Moreover, GIE prevented packed cell volume reduction and body weight loss compared to the untreated control. Additionally, GIE was able to prolong the mean survival time of infected mice significantly. The results obtained in this study confirmed the safety and promise of G. inodorum as an important source of new antimalarial agents and justify its folkloric use for malaria treatment.

11.
Parasitol Res ; 119(11): 3755-3761, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918603

RESUMO

Free-living amoeba (FLA) research in the Philippines is still in its infancy but has, by far, demonstrated the presence of potentially pathogenic species. Acanthamoeba may cause sight-threatening and central nervous system infections to humans, yet its epidemiologic distribution from local environmental sources is yet to be defined. The present study aimed to provide a baseline epidemiologic distribution of Acanthamoeba spp. in freshwater systems in the Philippines and establish potential pathogenicity of isolates through thermo-tolerance assay. A total of 63 water samples were collected from 13 freshwater systems all over the Philippine archipelago. The low-volume (50 ml) water samples were processed and cultured on non-nutrient agar lawned with Escherichia coli and observed for amoebic growth using light microscopy. Amoebic culture demonstrated 14.28% (9/63) positivity while further molecular testing of culture-positive plates using Acanthamoeba-specific primers demonstrated 100% (9/9) confirmation of Acanthamoeba species. Genotyping of Acanthamoeba isolates revealed T1, T3, T4, T5, T7, T11, and T15 genotypes. Thermo-tolerance assay demonstrated that T5 and T7 genotypes were potentially pathogenic strains. The evidence of environmental distribution of Acanthamoeba spp. in the freshwater systems in the Philippines and thermo-tolerance profile of isolates are significant aspects of amoeba study in public health and calls for initiatives in the dissemination of relevant information and the expansion of knowledge, awareness, and policies on pathogenic waterborne amoeba to mitigate, prevent, detect, and report cases of human infections.


Assuntos
Acanthamoeba/isolamento & purificação , Acanthamoeba/fisiologia , Água Doce/parasitologia , Acanthamoeba/genética , Acanthamoeba/crescimento & desenvolvimento , DNA de Protozoário/genética , Monitoramento Ambiental , Genótipo , Humanos , Filipinas , Termotolerância
12.
J Trop Med ; 2020: 6165928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684939

RESUMO

Kaempferol (KMF) is a member of flavonol widely found in tea, broccoli, apples, strawberries, and beans. It has been demonstrated to present several pharmacological properties with potent antimalarial activity against Plasmodium berghei-infected mice. Hence, the search for a safe and new antimalarial compound with combinations to delay the development of resistance was the aim of this study. Thus, the therapeutic effect of the combination of KMF and artesunate (ART) in P. berghei-infected mice was evaluated. Combination of KMF and ART in P. berghei ANKA- (PbANKA-) infected ICR mice in a fixed-ratio combination (1 : 1) and fractions of their median effective dose (ED50) was also investigated using the standard 4-day suppressive test. The ED50 levels of KMF and ART in mice infected with PbANKA were 20.06 ± 2.65 and 6.06 ± 1.33 mg/kg, respectively. Moreover, KMF showed promising synergistic combination with ART at the doses of their ED50 and fixed-ratio combination (1 : 1) of their ED50 of 1/2 with combination index (CI) values of 0.86 and 0.47, respectively. Additionally, KMF, ART, and its combination at the doses of their ED50 and fixed-ratio combination (1 : 1) of their ED50 of 1/2 also presented significantly (P < 0.001) prolonged mean survival time (MST). The findings of this study showed that a combination of KMF and ART enhanced the antimalarial activity of ART and prolonged MST. This study supports the basis for the selection of KMF as a prospective compound for further consideration as a partner drug for ART.

13.
J Water Health ; 18(2): 118-126, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300086

RESUMO

Water reservoirs are important manmade structures providing water security to deliver clean and safe water for drinking and other purposes to the community. Eighty water samples were collected from Magat and Ipo water reservoirs using purposive sampling between November 2018 and January 2019. Water samples were collected in sterile containers for testing. The samples were cultured in non-nutrient agar and lawned with Escherichia coli and incubated at 33 °C. Twelve out of the 80 (15%) water samples were positive for amoebic growth. Light and scanning electron microscopy (SEM) revealed double-walled cystic stages and were initially identified as Acanthamoeba spp. based on morphological characteristic in reference to Page's established criteria. Their extracted DNAs were used in polymerase chain reaction using JDP1 and JDP2 primers and confirmed the presence of Acanthamoeba DNA in agarose gel electrophoresis. Aligned sequences from PCR products were deposited in GenBank under accession numbers MK886460, MK909919, MK905437, MK910997, MK911021 and MK886514. The presence of potentially pathogenic Acanthamoeba spp. in water reservoirs is considered a potential risk for public health, requiring appropriate processing of water in treatment plants.


Assuntos
Acanthamoeba/isolamento & purificação , Água Doce/parasitologia , Abastecimento de Água , Filipinas , Reação em Cadeia da Polimerase
14.
Parasitol Int ; 76: 102088, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32087333

RESUMO

Malaria is a global health problem leading to the death of 435,000 cases in tropical and sub-tropical zones. Spread and emergence of increasing resistance to the antimalarial drugs are the major challenges in the control of malaria. Therefore, searching for alternative antimalarial drugs is urgently needed, and combination treatment preferred as an approach to address this. This study aimed to evaluate in vivo antimalarial activity of zingerone (ZN), and its combination with dihydroartemisinin (DHA) against Plasmodium berghei infected mice. ZN was prepared and tested for acute oral toxicity according to the OECD guideline. In vivo antimalarial activity of different doses of ZN and combination with DHA were determined using the 4-day suppression test. The results showed that ZN was found to be safe and no mortality within the observation period, and the lethal dose might be greater than the limited dose of 1000 mg/kg. For in vivo antimalarial test, ZN exhibited significant (p < .05) parasitemia inhibition of 30.65% and 45.75% at the doses of 50 mg/kg and 100 mg/kg, respectively. Moreover, effective dose 50 (ED50) of ZN was 29.76 mg/kg. The combination treatment of ZN and DHA at the doses of ED50 values at the fixed ratio 1:1 was found to present significant (p < .001) antimalarial activity as compared to ZN and DHA treated alone with markedly prolonged mean survival time. Additionally, the combination index (0.83384) revealed the synergistic antimalarial effect. It can be concluded that ZN exerted potent antimalarial activity with no toxicity, and combination treatment with DHA produced the synergistic antimalarial effect.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Guaiacol/análogos & derivados , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Modelos Animais de Doenças , Combinação de Medicamentos , Sinergismo Farmacológico , Guaiacol/administração & dosagem , Guaiacol/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C
15.
Environ Pollut ; 259: 113903, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023789

RESUMO

Biofilms containing pathogenic organisms from the water supply are a potential source of protozoan parasite outbreaks and a significant public health concern. The aim of the present study was to demonstrate the simultaneous and multi-spatial occurrence of waterborne protozoan pathogens (WBPP) in substrate-associated biofilms (SAB) and compare it to surface water (SW) and sediments with bottom water (BW) counterparts using manual filtration and elution from low-volume samples. For scenario purposes, simulated environmental biofilm contamination was created from in-situ grown one-month-old SAB (OM-SAB) that were spiked with Cryptosporidium parvum oocysts. Samples were collected from the largest freshwater reservoirs in Luzon, Philippines and a University Lake in Thailand. A total of 69 samples (23 SAB, 23 SW, and 23 BW) were evaluated using traditional staining techniques for Cryptosporidium, and Immunofluorescence staining for the simultaneous detection of Cryptosporidium and Giardia. WBPP were found in 43% SAB, 39% SW, and 39% BW of the samples tested in the present study with SAB results reflecting SW and BW results. Further highlights were demonstrated in the potential of using low-volume samples for the detection of parasites in source water. Scanning electron microscopy of OM-SAB samples revealed a naturally-associated testate amoeba shell, while Cryptosporidium oocysts spiked samples provided a visual profile of what can be expected from naturally contaminated biofilms. This study provides the first evidence for the simultaneous and multi-spatial occurrence of waterborne protozoan pathogens in low-volume aquatic matrices and further warrants SAB testing along with SW and BW matrices for improved water quality assessment strategies (iWQAS).


Assuntos
Biofilmes , Cryptosporidium , Água Doce , Qualidade da Água , Animais , Criptosporidiose/prevenção & controle , Cryptosporidium/fisiologia , Monitoramento Ambiental , Água Doce/parasitologia , Oocistos/fisiologia , Filipinas , Tailândia , Qualidade da Água/normas , Abastecimento de Água/normas
16.
Sci Total Environ ; 700: 134447, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677419

RESUMO

Identification of Cryptosporidium oocyst is essential in ensuring water quality fit for human use, consumption, and recreation. This communication proposes the supplemental analysis of substrate-associated biofilms, in particular, freshwater sponges in improving case finding of waterborne-protozoan pathogens (WBPP) in environmental aquatic samples. In this study, a small portion of a mature freshwater sponge under the Genus Spongilla was subjected to microscopic and molecular analysis to identify the presence of Cryptosporidium. Microscopic screening with modified Kinyoun's staining (MK) and microscopic confirmation using direct antibody fluorescent testing (IFT) returned with Cryptosporidium spp. positive findings. Molecular investigation resulted in the confirmation of Cryptosporidium hominis upon sequencing of PCR products and phylogenetic analysis. This is the first report of a pathogenic protozoan, C. hominis isolated from a freshwater sponge. The results of this study provide evidence of the value of expanding water quality assessment strategies to the analysis of substrate-associated biofilms and sponges in improving case finding of WBPP in natural aquatic environments.


Assuntos
Água Doce/microbiologia , Poríferos/parasitologia , Animais , Cryptosporidium/isolamento & purificação , Oocistos , Filogenia , Reação em Cadeia da Polimerase
17.
BMC Public Health ; 19(1): 1294, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615478

RESUMO

BACKGROUND: The hematological changes following the initial drug regimen has been poorly understood in Thailand. This study was designed to determine the prevalence of malaria parasite recurrence and hematological alteration of patients during the initial drug regimen. METHODS: A retrospective study was conducted at Phop Phra Hospital, Tak Province, located in northwestern Thailand. All data from patients who were diagnosed with Plasmodium spp. infection - including types of Plasmodium spp., clinical characteristics, and hematological parameters - were retrieved and analyzed. RESULTS: The results demonstrated that during years 2012-2018, 95 out of 971 patients (9.78%) were infected with malaria two or more times. The gender, nationality, symptom of headache, type of Plasmodium spp., and career of each patient were associated with recurrence (P-value< 0.05). Among patients treated with malarial drug, the leukocyte count and red cell distribution width (RDW) were significantly changed when compared to untreated patients with recurrence (P-value< 0.05). CONCLUSION: This study indicated the high prevalence of malarial recurrence in Tak Province, Western Thailand, and its relationship to certain characteristics of individuals. Patients who were treated with antimalarial drugs exhibited leukocyte and RDW changes following the initial drug regimen. This data could be useful for prompt detection, treatment, and prevention of malarial recurrence in endemic areas of Thailand.


Assuntos
Antimaláricos/uso terapêutico , Índices de Eritrócitos/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prevalência , Recidiva , Estudos Retrospectivos , Tailândia/epidemiologia , Resultado do Tratamento , Adulto Jovem
18.
J Trop Med ; 2019: 5464519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582992

RESUMO

Plant species of the genus Tinospora (Menispermaceae) possess several pharmacological properties, and T. crispa has been reported to have antimalarial activity. T. baenzigeri (Chingcha Chalee) is a rich source of terpenes and quinoline alkaloids; however, it still has not yet been investigated the antimalarial activity of this plant extract. Hence, this study was aimed to evaluate the antimalarial activity of T. baenzigeri stem extract against Plasmodium berghei-infected mice. The aqueous crude extract of T. baenzigeri stem was prepared using a microwave-assisted method and tested for acute toxicity in mice. For evaluating the antimalarial activity in vivo, the standard 4-day test was carried out using groups of ICR mice infected with P. berghei ANKA administered orally by gavage with the extract (100, 250, and 500 mg/kg) for 4 consecutive days. Parasitemia, body weight, packed cell volume, and mean survival time were then measured. It was found that the aqueous crude extract of T. baenzigeri stem did not exhibit any sign of toxicity up to the dose of 2,000 mg/kg. The extract significantly (P < 0.01) inhibited parasitemia in a dose-dependent manner, with 22.02%, 50.81%, and 74.95% inhibition. Moreover, the marked prevention of body weight loss and packed cell volume reduction was observed at doses of 100, 250, and 500 mg/kg of extract-treated mice. Additionally, the extract prolonged the mean survival time of P. berghei-infected mice, compared to the untreated group. In conclusion, the aqueous crude extract of T. baenzigeri stem has demonstrated potent antimalarial activity against P. berghei-infected mice with prolonged mean survival time and prevention of body weight loss and packed cell volume reduction.

19.
J Water Health ; 17(4): 647-653, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31314001

RESUMO

Laguna de Bay or Laguna Lake is one of the six major lakes in the Philippines to be in close contact with population activities due to the expansion of urban settlements in the immediate cities surrounding the lake, thus pushing the population to settle upon its shores. To date, there are no data showing the biodiversity of free-living amoebae (FLA) present in this lake. The present study aims to isolate and identify the FLA present in Laguna de Bay, Philippines. Thirty subsurface water samples were taken from Laguna De Bay using random purposive sampling in May 2018 and were examined for amoebic growth under light microscopy (LM). Results show that 8 out of 30 (26.6%) water samples were positive for amoebic growth and were further tested for more advanced data and genetic variation of the species. Initial molecular analysis using polymerase chain reaction (PCR) and sequencing showed the presence of potentially pathogenic FLA Naegleria australiensis (MK418954). The detection of potential pathogenic FLA in lakes and dams may prove useful in preventing and controlling possible human infections in the country. More data from this study will aid in public awareness and establishing safety guidelines and control programs.


Assuntos
Amoeba , Lagos/parasitologia , Naegleria , Humanos , Filipinas , Reação em Cadeia da Polimerase
20.
Parasitol Int ; 68(1): 57-59, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30343056

RESUMO

During Plasmodium malaria parasite infection in a human, the intraerythrocytic stages lead to the clinical manifestations of the disease, especially hypoglycemia. Hypoglycemia is a recognized feature of severe malaria and linked with a high risk of mortality for children. Hence, the present study aimed to investigate the protective effect of T. crispa stem extract on hypoglycemia induced by P. berghei infection tested with a mouse model. ICR mice were inoculated with 1 × 107 parasitized erythrocytes of P. berghei ANKA (PbANKA) by intraperitoneal injection and given 50, 100, and 200 mg/kg of ethanolic extract for 4-consecutive days. The results showed that T. crispa stem extract exerted a protective effect (100%) on hypoglycemia induced by PbANKA infection at doses of 100 and 200 mg/kg. A significantly (p < .05) prolonged mean survival time (28.0 ±â€¯1.9 days) of the extract treated mice was also observed. Additionally, no effect on blood glucose levels was seen in normal mice treated with all doses of extract. It can be concluded that T. crispa stem extract may have beneficial properties in protecting against hypoglycemia, and in increasing survival time during malaria infection.


Assuntos
Hipoglicemia/tratamento farmacológico , Malária/complicações , Extratos Vegetais/administração & dosagem , Caules de Planta/química , Plasmodium berghei/fisiologia , Tinospora/química , Animais , Glicemia/análise , Glicemia/efeitos dos fármacos , Eritrócitos/parasitologia , Etanol/química , Humanos , Hipoglicemia/etiologia , Hipoglicemia/prevenção & controle , Malária/parasitologia , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA